BU CS 332 – Theory of Computation

Lecture 25:

• Final review

Reading: Sipser Ch 7.1-8.3

Ran Canetti

December 10, 2020

Final Topics

Everything from Midterms 1 and 2

 Midterm 1 topics: DFAs, NFAs, regular expressions, pumping lemma, context-free grammars, pumping lemma for CFLs

(more detail in lecture 9 notes)

- Midterm 2 topics: Turing machines, TM variants, the universal TM, Church-Turing thesis, deciding vs. recognizing, countable and uncountable sets, undecidability, unrecognizability, reductions, mapping reductions
 - (more detail in lecture 17 notes)

Time Complexity (7.1)

- Asymptotic notation: Big-Oh, little-oh, Big-Omega, littleomega, Theta
- Know the definition of running time for a TM and of time complexity classes (TIME / NTIME)
- Understand how to simulate multi-tape TMs and NTMs using single-tape TMs and know how to analyze the running time overhead

P and NP (7.2, 7.3)

- Know the definitions of P and NP
- Understand the verifier interpretation of NP and why it is equivalent to the NTM definition
- Know how to:
 - analyze the running time of algorithms
 - show that languages are in P / NP
 - construct verifiers and analyze their runtime
- Understand the implications of P = NP
- Understand the difference between NP and co-NP

NP-Completeness (7.4, 7.5)

- Know the definition of poly-time reducibility
- Understand the definitions of NP-hardness and NPcompleteness
- Understand the statement of the Cook-Levin theorem (and understand the main ideas of the proof)
- Understand several canonical NP-complete problems and the relevant reductions: SAT, 3SAT, CLIQUE, INDEPENDENT-SET, VERTEX-COVER, HAMPATH, SUBSET-SUM

Space Complexity (8.1)

- Know the definition of:
 - space usage of a TM / NTM
 - space complexity of languages
 - Space complexity classes (SPACE / NSPACE)
- Understand how to analyze the space complexity of algorithms (including SAT, NFA analysis)
- Understand the relations between time and space complexities of languages
- Savitch theorem: SPACE(f(n)) vs NSPACE(f(n))
 - Understand the proof

PSPACE and PSPACE-Completeness (8.2, 8.3)

- Know the definitions of PSPACE and NPSPACE
- Understand how to show that languages are in PSPACE
- Know the definition of PSPACE-completeness
- You will not be asked anything about the PSPACEcomplete language TQBF, or to show that any specific language is PSPACE-complete

Mapping the universe of languages

- Understand the general picture of complexity classes
- Know which containment are known to be strict, which are conjectured

Things we didn't get to talk about

- Logarithmic space
- Boolean circuits
- Randomized algorithms / complexity classes
- Search vs. decision, counting
- Approximation /promise problems
- Average-case complexity
- Other models of computation:
 - Interactive proof systems
- Quantum algorithms
- Cryptography: Applied computational hardness

. . . .

Tips for Preparing Exam Solutions

How to present an algorithmic solution

- Describe the input, output
- Give a high level idea of the solution:
- Describe the algorithm in a clear and concise way
- Explain why it is correct, covering all cases
- Analyze the runtime:
 - Sometimes it is useful to analyse each step separately
 - Sometimes it is easier to give a more global bound

Designing NP verifiers

We give a poly-time verifier for TEAM. A certificate c for our verifier is a subset of M of size k.

- "On input $\langle n, X, Y, Z, M, k; c \rangle$ where $\langle n, X, Y, Z, M, k \rangle$ is a *TEAM* instance and c is a certificate:
 - 1. If $k > \min(n, |M|)$, reject.
 - **2.** Check whether |c| = k and $c \subseteq M$.
 - 3. Check whether all elements of triples in c are different.
 - 4. If any of these checks fails, reject; otherwise, accept."

Step 1 is performed to ensure that the running time is polynomial in n even for large k. Step 2 can be run in $O(k \cdot |M|) = O(|M|^2)$ time, by iterating through M and marking elements. Step 3 can be implemented to run in $O(|c| \log |c|)$ time by first sorting the elements of c. This verifier runs in polynomial time; hence, $TEAM \in NP$.

- Describe the input, the certificate (=witness)
- high-level description of algorithm, analysis of running time
- Explain correctness of your algorithm

NP-completeness proofs

To show a language *L* is NP-complete:

- 1) Show *L* is in NP (follow guidelines from previous two slides)
- 2) Show *L* is NP-hard (usually) by giving a poly-time reduction $A \leq_p L$ for some NP-complete language *A*
 - High-level description of algorithm computing reduction
 - Explanation of correctness: Why is w ∈ A iff f(w) ∈ L for your reduction f?
 - Analysis of running time

Practice Problems

Ρ

Give examples of the following languages: 1) A language in P. 2) A decidable language that is not in P. 3) A language for which it is unknown whether it is in P. Give an example of a problem that is solvable in polynomial-time, but which is not in P

Let L =

$\{\langle w_1, w_2 \rangle | \exists \text{ strings } x, y, z \text{ such that } w_1 = xyz \text{ and } w_2 = xy^R z \}.$ Show that $L \in P$.

Which of the following operations is P closed under? Union, concatenation, star, intersection, complement.

NP and NP-completeness

Prove that LPATH ={ $\langle G, s, t, k \rangle | G$ is an undirected graph containing a simple path from s to t of length $\geq k$ } is in NP

Prove that *LPATH* is NP-hard

Which of the following operations is NP closed under? Union, concatenation, star, intersection, complement. Show that if P = NP, there is a polynomial-time decider for $USAT = \{\langle \phi \rangle | \phi \text{ is a formula} with exactly one satisfying assignment}\}$

Space Complexity

Which of the following statements are true?

• $SPACE(2^n) = SPACE(2^{n+1})$

• $SPACE(2^n) = SPACE(3^n)$

• $NSPACE(n^2) = SPACE(n^5)$

Consider the inheritance problem from HW9, except Alice and Bob now take turns drawing bags from boxes. Alice's goal is to assemble a complete collection of marbles, and Bob's is to thwart her. Prove that determining whether Alice has a winning strategy is in PSPACE.