BU CS 332 — Theory of Computation

Lecture 24:

* Space Complexity Reading:
Sipser Ch 8.1-8.3

Ran Canetti
December 8, 2020

Space analysis

Space complexity of a TM (algorithm) = maximum number
of tape cell it uses on a worst-case input

Formally: Let f : N - N.ATM M runs in space f(n) if on
every input w € £*, M halts on w using at most f(n) cells

For nondeterministic machines: Letf : N — N. AnNTM
N runs in space f(n) if on every input w € X%, N haltson w
using at most f(n) cells on every computational branch

12/8/2020 CS332 - Theory of Computation 2

Space complexity classes

letf: N—> N

A language A € SPACE(f (n)) if there exists a basic single-
tape (deterministic) TM M that

1) Decides A4, and
2) Runs in space O(f (n))

A language A € NSPACE(f (n)) if there exists a single-
tape nondeterministic TM N that

1) Decides A4, and
2) Runs in space O(f (n))

12/8/2020 CS332 - Theory of Computation 3

Space vs. Time

We saw:

TIME(f(n)) € NTIME(f(n)) € SPACE(f(n)) € TIME(2°U/())

12/8/2020 CS332 - Theory of Computation 4

What is the space-cost of non-determinism?

For time, the best we can do is:

TIME(f(n)) € NTIME(f (n)) € TIME (20U (™))

Can we do better for space?

12/8/2020 CS332 - Theory of Computation

Savitch’s Theorem:
Deterministic vs. Nondeterministic Space

Theorem: Let f be a function with f(n) = n. Then
NSPACE(f(n)) € SPACE ((f(n))z)

Proof idea:
* Let N be an NTM deciding f in space f(n)

* We construct a TM M deciding f in space O ((f(n))z)

* Actually solve a more general problem:

We will design procedure CANYIELD(cq, ¢, t)

* Given configurations ¢y, ¢, of N and natural number t,
decide whether N can go from c¢; to ¢, in < t steps
on some nondeterministic path.

12/8/2020 2 - Theory ot Computation

Savitch’s Theorem

* Let N be an NTM deciding f in space f(n)
M =“On input w:
Output the result of CANYIELD(cg, ¢, 2% (V)"

12/8/2020 CS332 - Theory of Computation

Savitch’s Theorem

CANYIELD(cq, ¢y, t) decides whether N can go from configuration
c1 to ¢, in < t steps on some nondeterministic path:

CANYIELD(cq, cp, t) =
1. Ift =1, acceptif c; = ¢, or cq yields ¢, in one transition.
Else, reject.
If t > 1, then for each config c,,;4 of N with < f(n) cells:
Run CANYIELD({cq, Cimig, t/2)).
Run CANYIELD({Cyiq, C2,t/2)).
If both runs accept, accept.

o U kW

Reject.

12/8/2020 CS332 - Theory of Computation 8

Complexity class PSPACE

Definition: PSPACE is the class of languages decidable in
polynomial space on a basic single-tape (deterministic) TM

PSPACE = U}, SPACE(n*)

Definition: NPSPACE is the class of languages decidable in
polynomial space on a single-tape (nondeterministic) TM

NPSPACE = Uy, NSPACE(n")
T

12/8/2020 CS332 - Theory of Computation 9

Relationships between complexity classes
1. P S NP < PSPACE < EXP
since SPACE(f(n)) € TIME (20U ("))

PSPACE=NPSPACE

2. P # EXP (Monday)

Which containments NP
in (1) are proper?
Unknown!

PSPACE-Completeness

12/8/2020 (S332 - Theory of Computation

What happens in a world where P # PSPACE?

Even more believable than P #+ NP, but still(!) very far from
proving it

Question: What would P # PSPACE allow us to conclude
about problems we care about?

PSPACE-completeness: Find the “hardest” problems in PSPACE
Find L € PSPACE suchthat L € P iff P = PSPACE

12/8/2020 CS332 - Theory of Computation 12

Reminder: NP-completeness

Definition: A language B is NP-complete if
1) B € NP, and
2) Every language A € NP is poly-time reducible to
B,ie., A <, B ("B is NP-hard”)

12/8/2020 CS332 - Theory of Computation 13

PSPACE-completeness

Definition: A language B is PSPACE-complete if
1) B € PSPACE, and
2) Every language A € PSPACE is poly-time reducible to

B,ie., A <, B (“B is PSPACE-hard”)

12/8/2020 CS332 - Theory of Computation 14

A PSPACE-complete problem: TQBF

“Is a fully quantified logical formula true?”

e Boolean variable: Variable that can take on the value
true/false (encoded as 0/1)

Boolean operations: A (AND), v (OR), = (NOT)

Boolean formula: Expression made of Boolean variables and
operations. Ex: (xq VX;) A X3

Fully guantified Boolean formula: Boolean formula with all
variables quantified (V, 3) Ex: Vx;3x3Vx, (x1V X3) A X3

Every fully quantified Boolean formula is either true or false

TQBF = {{p)|p is a true fully quantified formula}

12/8/2020 CS332 - Theory of Computation 15

Theorem: TQBF is PSPACE-complete

Need to prove two things... T

1) TQBF € PSPACE

2) Every problem in PSPACE is poly-time reducible to
TOQBF (TQBF is PSPACE-hard)

12/8/2020 CS332 - Theory of Computation

16

1) TQBF is in PSPACE

T = “Oninput (@),
where @ is a fully quantified Boolean formula:

1. If @ has no quantifiers, it has only constants
(and no variables). Evaluate ¢.
If true, accept; else, reject.
2. If @ is of the form Jx Y, recursively call T
on Y with x = 0 and then on Y with x = 1.
If either call accepts, accept; else, reject.
3. If ¢ is of the form Vx 1, recursively call T
on Y with x = 0 and then on Y with x = 1.
If both calls accept, accept; else, reject.”

* If nis the input length, T uses space 0(n).

12/8/2020 CS332 - Theory of Computation

17

2) TQBF is PSPACE-hard

Theorem: Every language A € PSPACE is poly-time
reducible to TOQBF

Proof idea:

Let A € PSPACE be decided by a poly-space deterministic
TM M. Using proof of Cook-Levin Theorem,

M accepts input w < formula @y, ,, is true

Using idea of Savitch’s Theorem, replace ¢,;,, with a

guantified formula of poly-size that can be computed in
poly-time

Unconditional Hardness

12/8/2020 (S332 - Theory of Computation

Hardness results so far
e If P #+ NP, then 3SAT & P

* If P # PSPACE, then TQBF €& P T

Question: Are there decidable languages that we can
show are not in P?

12/8/2020 CS332 - Theory of Computation

20

Diagonalization redux

™ M

12/8/2020 CS332 - Theory of Computation

21

Diagonalization redux

TMM | M((M1))? | M((M2))? | M({M3))? | M({M4))? D({D))?
M, Y N Y Y
M, N N Y Y
M3 Y Y Y N
M, N N Y N
D

SAty = {{M) | M is a TM that does not accept input (M)}
SAtmexp = 1{M) | M is a TM that does not accept input (M)

within 2™ steps)

12/8/2020 CS332 - Theory of Computation 22

An explicit undecidable language

* Theorem: L = SAtmexp = {{M) | M isa TM that
does not accept input (M) within 21"l steps}

is in EXP, but notin P
Proof:

e In EXP: Simulate M on input (M) for 2™ steps and flip
its decision

* Not in P: Suppose for contradiction that D decides L in
time n®

12/8/2020 CS332 - Theory of Computation 23

Time and space hierarchy theorems

* For any* function f(n) = nlogn, a Ianguz(ag)e exists that
n

is decidable in f(n) time, but notin o (lo]g;f(n)) time.

* For any* function f(n) = nlogn, a language exists that
is decidable in f(n) space, but not in o(f(n)) space.

*time constructible and space constructible, respectively

recognizable

decidable

EXPSPACE
EXPTIME
PSPACE=NPSPACE

