
BU CS 332 – Theory of Computation

Lecture 24:

• Space Complexity Reading:

Sipser Ch 8.1-8.3

Ran Canetti

December 8, 2020

Space analysis

Space complexity of a TM (algorithm) = maximum number
of tape cell it uses on a worst-case input

Formally: Let 𝑓 ∶ ℕ → ℕ. A TM 𝑀 runs in space 𝑓(𝑛) if on
every input 𝑤 ∈ Σ∗, 𝑀 halts on 𝑤 using at most 𝑓 𝑛 cells

For nondeterministic machines: Let 𝑓 ∶ ℕ → ℕ. An NTM
𝑁 runs in space 𝑓(𝑛) if on every input 𝑤 ∈ Σ∗, 𝑁 halts on 𝑤
using at most 𝑓 𝑛 cells on every computational branch

12/8/2020 CS332 - Theory of Computation 2

Space complexity classes

Let 𝑓 ∶ ℕ → ℕ

A language 𝐴 ∈ SPACE(𝑓(𝑛)) if there exists a basic single-
tape (deterministic) TM 𝑀 that

1) Decides 𝐴, and

2) Runs in space 𝑂(𝑓(𝑛))

A language 𝐴 ∈ NSPACE(𝑓(𝑛)) if there exists a single-
tape nondeterministic TM 𝑁 that

1) Decides 𝐴, and

2) Runs in space 𝑂(𝑓(𝑛))

12/8/2020 CS332 - Theory of Computation 3

Space vs. Time

We saw:

𝑇𝐼𝑀𝐸 𝑓 𝑛 ⊆ 𝑁𝑇𝐼𝑀𝐸 𝑓 𝑛 ⊆ 𝑆𝑃𝐴𝐶𝐸 𝑓 𝑛 ⊆ 𝑇𝐼𝑀𝐸(2𝑂 𝑓 𝑛)

12/8/2020 CS332 - Theory of Computation 4

What is the space-cost of non-determinism?

For time, the best we can do is:

𝑇𝐼𝑀𝐸 𝑓 𝑛 ⊆ 𝑁𝑇𝐼𝑀𝐸 𝑓 𝑛 ⊆ 𝑇𝐼𝑀𝐸(2𝑂 𝑓 n)

Can we do better for space?

12/8/2020 CS332 - Theory of Computation 5

Savitch’s Theorem:
Deterministic vs. Nondeterministic Space

Theorem: Let 𝑓 be a function with 𝑓 𝑛 ≥ 𝑛. Then

𝑁𝑆𝑃𝐴𝐶𝐸 𝑓 𝑛 ⊆ 𝑆𝑃𝐴𝐶𝐸 𝑓 𝑛
2
.

Proof idea:

• Let 𝑁 be an NTM deciding 𝑓 in space 𝑓(𝑛)

• We construct a TM 𝑀 deciding 𝑓 in space 𝑂 𝑓 𝑛
2

• Actually solve a more general problem:

We will design procedure CANYIELD 𝑐1, 𝑐2, 𝑡 ∶

• Given configurations 𝑐1, 𝑐2 of 𝑁 and natural number 𝑡,
decide whether 𝑁 can go from 𝑐1 to 𝑐2 in ≤ 𝑡 steps
on some nondeterministic path.

12/8/2020 CS332 - Theory of Computation 6

Savitch’s Theorem
• Let 𝑁 be an NTM deciding 𝑓 in space 𝑓(𝑛)

𝑀 = “On input 𝑤:

Output the result of CANYIELD(𝑐𝑠, 𝑐𝑎, 2
𝑑𝑓 𝑛)”

12/8/2020 CS332 - Theory of Computation 7

Savitch’s Theorem
CANYIELD(𝑐1, 𝑐2, 𝑡) decides whether 𝑁 can go from configuration
𝑐1 to 𝑐2 in ≤ 𝑡 steps on some nondeterministic path:

CANYIELD(𝑐1, 𝑐2, 𝑡) =

1. If 𝑡 = 1, accept if 𝑐1 = 𝑐2 or 𝑐1 yields 𝑐2 in one transition.

Else, reject.

2. If 𝑡 > 1, then for each config 𝑐𝑚𝑖𝑑 of 𝑁 with ≤ 𝑓 𝑛 cells:

3. Run CANYIELD(〈𝑐1, 𝑐𝑚𝑖𝑑 , 𝑡/2〉).

4. Run CANYIELD(〈𝑐𝑚𝑖𝑑 , 𝑐2, 𝑡/2〉).

5. If both runs accept, accept.

6. Reject.

12/8/2020 CS332 - Theory of Computation 8

Complexity class PSPACE

Definition: PSPACE is the class of languages decidable in
polynomial space on a basic single-tape (deterministic) TM

PSPACE = 𝑘=1ڂ
∞ SPACE(𝑛𝑘)

Definition: NPSPACE is the class of languages decidable in
polynomial space on a single-tape (nondeterministic) TM

NPSPACE = 𝑘=1ڂ
∞ NSPACE(𝑛𝑘)

12/8/2020 CS332 - Theory of Computation 9

Relationships between complexity classes

12/8/2020 CS332 - Theory of Computation 10

1. P ⊆ NP ⊆ PSPACE ⊆ EXP

since 𝑆𝑃𝐴𝐶𝐸 𝑓 𝑛 ⊆ 𝑇𝐼𝑀𝐸(2𝑂(𝑓 𝑛))

2. P ≠ EXP (Monday)

Which containments

in (1) are proper?

Unknown!

PSPACE=NPSPACE

EXP

P

NP

PSPACE-Completeness

12/8/2020 CS332 - Theory of Computation 11

What happens in a world where P ≠ PSPACE?

Even more believable than P ≠ NP, but still(!) very far from
proving it

Question: What would P ≠ PSPACE allow us to conclude
about problems we care about?

PSPACE-completeness: Find the “hardest” problems in PSPACE

Find 𝐿 ∈ PSPACE such that 𝐿 ∈ P iff P = PSPACE

12/8/2020 CS332 - Theory of Computation 12

Reminder: NP-completeness

Definition: A language 𝐵 is NP-complete if

1) 𝐵 ∈ NP, and

2) Every language 𝐴 ∈ NP is poly-time reducible to

𝐵, i.e., 𝐴 ≤p 𝐵 (“𝐵 is NP-hard”)

12/8/2020 CS332 - Theory of Computation 13

PSPACE-completeness

Definition: A language 𝐵 is PSPACE-complete if

1) 𝐵 ∈ PSPACE, and

2) Every language 𝐴 ∈ PSPACE is poly-time reducible to

𝐵, i.e., 𝐴 ≤p 𝐵 (“𝐵 is PSPACE-hard”)

12/8/2020 CS332 - Theory of Computation 14

A PSPACE-complete problem: TQBF

“Is a fully quantified logical formula true?”

• Boolean variable: Variable that can take on the value
true/false (encoded as 0/1)

• Boolean operations: ∧ AND , ∨ OR , ¬ (NOT)

• Boolean formula: Expression made of Boolean variables and
operations. Ex: (𝑥1 ∨ 𝑥2) ∧ 𝑥3

• Fully quantified Boolean formula: Boolean formula with all
variables quantified (∀, ∃) Ex: ∀𝑥1∃𝑥3∀𝑥2 (𝑥1 ∨ 𝑥2) ∧ 𝑥3

• Every fully quantified Boolean formula is either true or false

• 𝑇𝑄𝐵𝐹 = 𝜑 𝜑 is a true fully quantified formula

12/8/2020 CS332 - Theory of Computation 15

Theorem: TQBF is PSPACE-complete

Need to prove two things…

1) 𝑇𝑄𝐵𝐹 ∈ PSPACE

2) Every problem in PSPACE is poly-time reducible to
𝑇𝑄𝐵𝐹 (𝑇𝑄𝐵𝐹 is PSPACE-hard)

12/8/2020 CS332 - Theory of Computation 16

1) TQBF is in PSPACE

12/8/2020 CS332 - Theory of Computation 17

• If 𝑛 is the input length, 𝑇 uses space 𝑂 𝑛 .

𝑇 = “On input 〈𝜑〉,
where 𝜑 is a fully quantified Boolean formula:

1. If 𝜑 has no quantifiers, it has only constants
(and no variables). Evaluate 𝜑.
If true, accept; else, reject.

2. If 𝜑 is of the form ∃𝑥 𝜓, recursively call 𝑇
on 𝜓 with 𝑥 = 0 and then on 𝜓 with 𝑥 = 1.

If either call accepts, accept; else, reject.
3. If 𝜑 is of the form ∀𝑥 𝜓, recursively call 𝑇

on 𝜓 with 𝑥 = 0 and then on 𝜓 with 𝑥 = 1.
If both calls accept, accept; else, reject.’’

2) TQBF is PSPACE-hard

Theorem: Every language 𝐴 ∈ PSPACE is poly-time
reducible to 𝑇𝑄𝐵𝐹

Proof idea:

Let 𝐴 ∈ PSPACE be decided by a poly-space deterministic
TM 𝑀. Using proof of Cook-Levin Theorem,

𝑀 accepts input 𝑤⟺ formula 𝜑𝑀,𝑤 is true

Using idea of Savitch’s Theorem, replace 𝜑𝑀,𝑤 with a
quantified formula of poly-size that can be computed in
poly-time

12/8/2020 CS332 - Theory of Computation 18

Unconditional Hardness

12/8/2020 CS332 - Theory of Computation 19

Hardness results so far

• If P ≠ NP, then 3𝑆𝐴𝑇 ∉ 𝑃

• If P ≠ PSPACE, then 𝑇𝑄𝐵𝐹 ∉ 𝑃

Question: Are there decidable languages that we can
show are not in 𝑃?

12/8/2020 CS332 - Theory of Computation 20

Diagonalization redux

12/8/2020 CS332 - Theory of Computation 21

TM 𝑀

𝑀1

𝑀2

𝑀3

𝑀4

…

Diagonalization redux

12/8/2020 CS332 - Theory of Computation 22

TM 𝑀 𝑀(𝑀1)? 𝑀(𝑀2)? 𝑀(𝑀3)? 𝑀(𝑀4)?

𝑀1 Y N Y Y

𝑀2 N N Y Y

𝑀3 Y Y Y N

𝑀4 N N Y N

…

…

𝑆𝐴TM = 𝑀 𝑀 is a TM that does not accept input 𝑀 }
𝑆𝐴TM,𝐸𝑋𝑃 = 𝑀 𝑀 is a TM that does not accept input 𝑀

within 2| 𝑀 | steps}

𝐷(𝐷)?

𝐷

An explicit undecidable language

• Theorem: 𝐿 = 𝑆𝐴TM,𝐸𝑋𝑃 = 𝑀 𝑀 is a TM that
does not accept input 𝑀 within 2| 𝑀 | steps}

is in EXP, but not in P

Proof:

• In EXP: Simulate 𝑀 on input 𝑀 for 2| 𝑀 | steps and flip
its decision

• Not in P: Suppose for contradiction that 𝐷 decides 𝐿 in
time 𝑛𝑘

12/8/2020 CS332 - Theory of Computation 23

Time and space hierarchy theorems

• For any* function 𝑓 𝑛 ≥ 𝑛 log 𝑛 , a language exists that
is decidable in 𝑓(𝑛) time, but not in 𝑜

𝑓 𝑛

log 𝑓 𝑛
time.

• For any* function 𝑓 𝑛 ≥ 𝑛 log 𝑛 , a language exists that
is decidable in 𝑓(𝑛) space, but not in 𝑜 𝑓(𝑛) space.

*time constructible and space constructible, respectively

12/8/2020 CS332 - Theory of Computation 24

12/8/2020 CS332 - Theory of Computation 25

recognizable

PSPACE=NPSPACE

EXPSPACE

EXPTIME

decidable

P
CFL

regular

NP coNP

