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Complexity measures we’ve studied so far

e Deterministic time TIME
* Nondeterministic time NTIME
e Classes P, NP
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Complexity measures we’ve studied so far

e Deterministic time TIME
* Nondeterministic time NTIME
e Classes P, NP

What about space complexity?

Space complexity: The maximum amount of information
that is “kept around” at any point during the computation.
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Complexity measures we’ve studied so far

e Deterministic time TIME
* Nondeterministic time NTIME
e Classes P, NP

What about space complexity?

Space complexity: The maximum amount of information
that is “kept around” at any point during the computation.

=>» A fundamental measure! (perhaps even more than time)
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Space analysis

Space complexity of a TM (algorithm) = maximum number
of tape cell it uses on a worst-case input

Formally: Let f : N - N.ATM M runs in space f(n) if on
every input w € £*, M halts on w using at most f(n) cells
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Space analysis

Space complexity of a TM (algorithm) = maximum number
of tape cell it uses on a worst-case input

Formally: Let f : N - N.ATM M runs in space f(n) if on
every input w € £*, M halts on w using at most f(n) cells

For nondeterministic machines: Letf : N — N. An NTM
N runs in space f(n) if on every input w € X%, N haltson w
using at most f(n) cells on every computational branch
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Space complexity classes

letf: N—> N

A language A € SPACE(f (n)) if there exists a basic single-
tape (deterministic) TM M that

1) Decides A4, and
2) Runs in space O(f (n))

A language A € NSPACE(f (n)) if there exists a single-
tape nondeterministic TM N that

1) Decides A4, and
2) Runs in space O(f (n))
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Example: Space complexity of SAT

Theorem: SAT € SPACE(n)

Proof: The following deterministic TM decides SAT using
linear space

On input (@) where ¢ is a Boolean formula:
1. For each truth assignment to the variables
X1,y ey Xy OF @:
2. Evaluate @ on x4, ..., X,

3. If any evaluation = 1, accept. Else, reject.
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Example: NFA analysis

Theorem: Let ALLyp, = {A |A is an NFA with L(A) = X%}
Then ALLyg4 € NSPACE(n).
Proof: The following NTM decides ALLyr4 in linear space

On input (A) where 4 is an NFA:

1. Place a marker on the start state of A.

2. Repeat 27 times where g is the # of states of A:

3 Nondeterministically select a € X.

4, Adjust the markers to simulate all ways for A to read a.

5. Acceptif at any point none of the markers are on an accept
state. Else, reject.



Example

~0=0+-0



Space vs. Time
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Space vs. Time

TIME(f(n)) € NTIME(f(n)) € SPACE(f(n))

How about the opposite direction? Can low-space
algorithms be simulated by low-time algorithms?



Reminder: Configurations

A configuration is a string uqv whereq € Q and u,v € I'"
* Tape contents = uv (followed by blanks L)

* Current state = g

* Tape head on first symbol of v

Example: 101q9:0111

Start configuration: gow
Accepting configuration: q = qaccept
Rejecting configuration: g = qreject
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Reminder: Configurations

Consider a TM with
e k states
* tape alphabet {0, 1}

* space f(n)

How many configurations are possible when this TM is run on
an inputw € {0,1}*?

Observation: If a TM enters the same configuration twice
when run on input w, it loops forever

Corollary: ATM running in space f(n) also runs in time
20(f(n))
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Savitch’s Theorem
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Savitch’s Theorem: Deterministic vs.
Nondeterministic Space

Theorem: Let f be a function with f(n) = n. Then
NSPACE(f(n)) € SPACE ((f(n))z) .

Proof idea:
* Let N be an NTM deciding f in space f(n)

* We construct a TM M deciding f in space 0 ((f(n))z)

* Actually solve a more general problem:

* Given configurations ¢4, ¢, of N and natural number t,
decide whether N can go from ¢4 to ¢, in < t steps
on some nondeterministic path.

=» Procedure CANYIELD(cq, 5, t)
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Savitch’s Theorem

Theorem: Let f be a function with f(n) > n. Then
NSPACE(f(n)) € SPACE ((f(n))z) .

Proof idea:
* Let N be an NTM deciding f in space f(n)
M = “On input w:
1. Output the result of CANYIELD(cy, Cqe, 247 (™))

Where CANYIELD(cq, ¢,, t) decides whether N can go from
configuration ¢q to ¢, in < t steps on some nondeterministic
path



Savitch’s Theorem

CANYIELD(cq, ¢y, t) decides whether N can go from configuration
c1 to ¢, in < t steps on some nondeterministic path:

CANYIELD(cq, cp, t) =
1. Ift =1, acceptif c; = ¢, or cq yields ¢, in one transition.
Else, reject.
If t > 1, then for each config c,,;4 of N with < f(n) cells:
Run CANYIELD({cq, Cimig, t/2)).
Run CANYIELD({Cyiq, C2,t/2)).
If both runs accept, accept.

o U kW

Reject.
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Complexity class PSPACE

Definition: PSPACE is the class of languages decidable in
polynomial space on a basic single-tape (deterministic) TM

PSPACE = U}y, SPACE(n*)

Definition: NPSPACE is the class of languages decidable in
polynomial space on a single-tape (nondeterministic) TM

NPSPACE = Uz, NSPACE(nk)
T
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Relationships between complexity classes
1. P S NP C PSPACE <€ EXP
since SPACE(f(n)) € TIME (20U ("))

PSPACE=NPSPACE

2. P # EXP (Monday)

Which containments NP
in (1) are proper?
Unknown!




