BU CS 332 – Theory of Computation

Lecture 23:

Space Complexity

Reading: Sipser Ch 8.1-8.3

Ran Canetti December 3, 2020

Complexity measures we've studied so far

- Deterministic time TIME
- Nondeterministic time NTIME
- Classes P, NP

Complexity measures we've studied so far

- Deterministic time TIME
- Nondeterministic time NTIME
- Classes P, NP

What about space complexity?

Space complexity: The maximum amount of information that is "kept around" at any point during the computation.

Complexity measures we've studied so far

- Deterministic time TIME
- Nondeterministic time NTIME
- Classes P, NP

What about space complexity?

Space complexity: The maximum amount of information that is "kept around" at any point during the computation.

➔ A fundamental measure! (perhaps even more than time)

Space analysis

Space complexity of a TM (algorithm) = maximum number of tape cell it uses on a worst-case input

Formally: Let $f : \mathbb{N} \to \mathbb{N}$. A TM *M* runs in space f(n) if on every input $w \in \Sigma^*$, *M* halts on *w* using at most f(n) cells

Space analysis

Space complexity of a TM (algorithm) = maximum number of tape cell it uses on a worst-case input

Formally: Let $f : \mathbb{N} \to \mathbb{N}$. A TM *M* runs in space f(n) if on every input $w \in \Sigma^*$, *M* halts on *w* using at most f(n) cells

For nondeterministic machines: Let $f : \mathbb{N} \to \mathbb{N}$. An NTM *N* runs in space f(n) if on every input $w \in \Sigma^*$, *N* halts on *w* using at most f(n) cells on every computational branch

Space complexity classes

Let $f : \mathbb{N} \to \mathbb{N}$

A language $A \in \text{SPACE}(f(n))$ if there exists a basic singletape (deterministic) TM M that

- 1) Decides A, and
- 2) Runs in space O(f(n))

A language $A \in NSPACE(f(n))$ if there exists a singletape nondeterministic TM N that

- 1) Decides A, and
- 2) Runs in space O(f(n))

Example: Space complexity of SAT

Theorem: $SAT \in SPACE(n)$

Proof: The following deterministic TM decides *SAT* using linear space

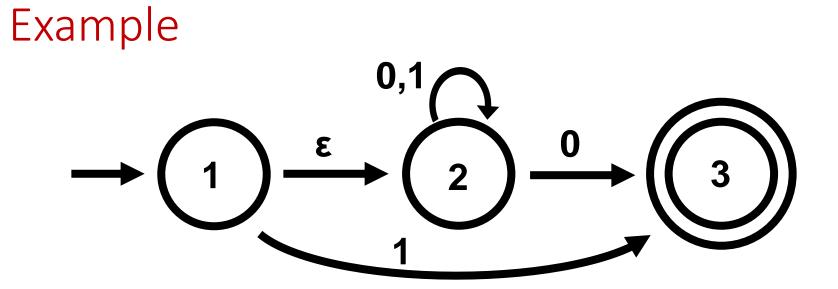
On input (φ) where φ is a Boolean formula:
1. For each truth assignment to the variables x₁, ..., x_m of φ:
2. Evaluate φ on x₁, ..., x_m
3. If any evaluation = 1, accept. Else, reject.

Example: NFA analysis

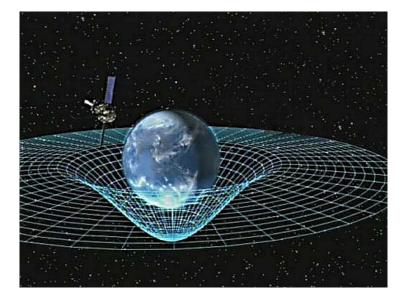
Theorem: Let $ALL_{NFA} = \{A \mid A \text{ is an NFA with } L(A) = \Sigma^* \}$ Then $\overline{ALL_{NFA}} \in \text{NSPACE}(n)$. Proof: The following NTM decides $\overline{ALL_{NFA}}$ in linear space

On input $\langle A \rangle$ where A is an NFA:

- 1. Place a marker on the start state of *A*.
- 2. Repeat 2^q times where q is the # of states of A:
- 3. Nondeterministically select $a \in \Sigma$.
- 4. Adjust the markers to simulate all ways for A to read a.
- 5. Accept if at any point *none* of the markers are on an accept state. Else, reject.



Space vs. Time



Space vs. Time

 $TIME(f(n)) \subseteq NTIME(f(n)) \subseteq SPACE(f(n))$

How about the opposite direction? Can low-space algorithms be simulated by low-time algorithms?

Reminder: Configurations

A configuration is a string uqv where $q \in Q$ and $u, v \in \Gamma^*$

- Tape contents = uv (followed by blanks \sqcup)
- Current state = q
- Tape head on first symbol of v

Example: $101q_50111$

Start configuration: $q_0 w$ Accepting configuration: $q = q_{accept}$ Rejecting configuration: $q = q_{reject}$

Reminder: Configurations

Consider a TM with

- k states
- tape alphabet {0, 1}
- space f(n)

How many configurations are possible when this TM is run on an input $w \in \{0,1\}^n$?

Observation: If a TM enters the same configuration twice when run on input *w*, it loops forever

Corollary: A TM running in space f(n) also runs in time $2^{O(f(n))}$

Savitch's Theorem

Savitch's Theorem: Deterministic vs. Nondeterministic Space

Theorem: Let f be a function with $f(n) \ge n$. Then $NSPACE(f(n)) \subseteq SPACE((f(n))^2)$.

Proof idea:

- Let N be an NTM deciding f in space f(n)
- We construct a TM *M* deciding *f* in space $O\left(\left(f(n)\right)^2\right)$
- Actually solve a more general problem:
 - Given configurations c_1, c_2 of N and natural number t, decide whether N can go from c_1 to c_2 in $\leq t$ steps on some nondeterministic path.
 - → Procedure CANYIELD(c_1, c_2, t)

Savitch's Theorem

Theorem: Let f be a function with $f(n) \ge n$. Then $NSPACE(f(n)) \subseteq SPACE((f(n))^2)$.

Proof idea:

- Let N be an NTM deciding f in space f(n)
- M = "On input w:

1. Output the result of CANYIELD(c_s , c_{acc} , $2^{df(n)}$)"

Where CANYIELD (c_1, c_2, t) decides whether N can go from configuration c_1 to c_2 in $\leq t$ steps on some nondeterministic path

Savitch's Theorem

CANYIELD (c_1, c_2, t) decides whether N can go from configuration c_1 to c_2 in $\leq t$ steps on some nondeterministic path:

- $\mathsf{CANYIELD}(c_1, c_2, t) =$
- 1. If t = 1, accept if $c_1 = c_2$ or c_1 yields c_2 in one transition. Else, reject.
- 2. If t > 1, then for each config c_{mid} of N with $\leq f(n)$ cells:
- 3. Run CANYIELD($\langle c_1, c_{mid}, t/2 \rangle$).
- 4. Run CANYIELD($\langle c_{mid}, c_2, t/2 \rangle$).
- 5. If both runs accept, accept.
- 6. Reject.

Complexity class PSPACE

Definition: PSPACE is the class of languages decidable in polynomial space on a basic single-tape (deterministic) TM

 $PSPACE = \bigcup_{k=1}^{\infty} SPACE(n^k)$

Definition: NPSPACE is the class of languages decidable in polynomial space on a single-tape (nondeterministic) TM NPSPACE = $\bigcup_{k=1}^{\infty} NSPACE(n^k)$ Relationships between complexity classes 1. $P \subseteq NP \subseteq PSPACE \subseteq EXP$ since $SPACE(f(n)) \subseteq TIME(2^{O(f(n))})$

2. P ≠ EXP (Monday)
Which containments
in (1) are proper?
Unknown!

