BU CS 332 — Theory of Computation

Lecture 22:

* NP completeness Reading:
* Clique, subset sum is NP-c Sipser Ch 7.3-7.5

Ran Canetti
December 1, 2020

Polynomial-time reducibility

Definition:

A function f: X* = X" is polynomial-time computable if there
is a polynomial-time TM M which, given as input any w € X7,
halts with only f (w) on its tape.

Definition:

Language A is polynomial-time mapping reducible to

language B, written
A<,B

if there is a polynomial-time computable function f:X* - X*
such that for all stringsw € £*, wehavew € A & f(w) € B

12/1/2020 CS332 - Theory of Computation 2

Implications of poly-time reducibility

Theorem: If A <p B and B € P,then A € P.

Theorem: If A<, Band B<,C,then A<, C

12/1/2020 CS332 - Theory of Computation

NP-complete [anguages: The hardest in NP

A language B is NP-complete if
1. BENP
2. BisNP-hard, i.e, VAENP, A<, B

(every language in NP is poly-time reducible to B.)

NP-complete [anguages: The hardest in NP

A language B is NP-complete if
1. BENP
2. BisNP-hard, ie, VAENP, A<, B

(every language in NP is poly-time reducible to B.)

—————
- ~~

R

12/1/2020

Implication of poly-time reductions

Theorem. If

* B is NP-complete,
 Ce NP and

* B<,C

then Cis NP-complete.

Theorem. If B is NP-complete and BE P then
P = NP.

(So, if B is NP-complete and P #= NP
then there is no poly-time algorithm for B.)

12/1/2020 L24.6

An NP-Complete problem

Tntm = {(N,x,1Y): NTM N accepts x within t steps}
Tyt Is NP-complete:

* Tyt €E NP
*Forall L€ NP, L <, Tyry -

12/1/2020 CS332 - Theory of Computation 7

Cook-Levin Theorem

Theorem: SAT (Boolean satisfiability) is NP-complete

Proof: Already know SAT € P. Need to show every
problem in NP reduces to SAT

Stephen A. Cook (1971)

Leonid Levin (1973)

12/1/2020 CS332 - Theory of Computation

Proof of Cook-Levin Theorem

* Proof idea

* For each language A in NP, with a given input x for A, produce a
Boolean formula ¢ that simulates the verification machine V
for A on input x,w.

=> ¢ is satisfiable if and only if there exists w such that V(x,w)=1.

Applied Algorithm Lab. KAIST 9

Proof of Cook-Levin Theorem

* Proof idea:
e -The tableau of the computation of V(x,w) is polysize
* Have a variable describing each cell in the tableau

* Can verify that the tableau is a legal accepting computation by
checking only local conditions (windows of 2x3 cells)

- all checks are constant side
- poly-many checks

=» Can combine the checks @ # #
to a poly-size CNF i i
#

formula

10

New NP-complete problems from old

Lemma: If A <p B and B <p C, then A <p C

(poly-time reducibility is transitive)

Theorem: If C € NP and B <, C for some NP-complete
language B, then C is also NP-complete

12/1/2020 CS332 - Theory of Computation 11

Implication of poly-time reductions

Theorem. If

* B is NP-complete,

« Ce NP and

* B<,C

then Cis NP-complete.

\ < NP
el

A

O

12/1/2020

L24.12

New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!

by definition of NP-completeness

> SAT <

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM
VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
SET COVER TSP -

12/1/2020 CS332 - Theory of Computation 13

3SAT (3-CNF Satisfiability)

Definition(s):
* A literal either a variable of its negation Xg, X7
* A clause is a disjunction (OR) of literals Ex. xc VX7V x,

* A 3-CNF is a conjunction (AND) of clauses where each
clause contains exactly 3 literals

EX. CIACZA/\CT)’L —
(Xs VX7 VX)) ANV X VX) ANy VXyVxg)

3SAT = {{p)|@ is a satisfiable 3 — CNF}

12/1/2020 CS332 - Theory of Computation 14

3SAT is NP-complete
Theorem: 3SAT is NP-complete
Proof idea: 1) 3SAT is in NP (why?)

2) Show that SAT <, 35AT

ldea of reduction: Given a poly-time algorithm converting
an arbitrary formula @ into a 3CNF 1 such that ¢ is
satisfiable iff 1 is satisfiable

12/1/2020 CS332 - Theory of Computation 15

Independent Set

An independent set in an undirected graph G is a set of vertices
such that no edge has both its endpoints in the set.

INDEPENDENT — SET
= {(G, k)|G is an undirected graph containing an independent set with > k vertices}

* |s there an independent set of size > 67?

* |s there an independent set of size > 77?

N

12/1/2020 CS332 - Theory of Computation

Independent Set is NP-complete

1) INDEPENDENT — SET € NP
2) Reduce 3SAT <, INDEPENDENT — SET

Proof. “On input (@), where ¢ is a 3CNF formula,
1. Construct graph G from @

e (G contains 3 vertices for each clause, one for each literal.

* Connect 3 literals in a clause in a triangle.
* Connect literal to each of its negations.

2. Output (G, k), where k is the number of clauses in ¢.”

Example of the reduction

@ = (X1 Vxy V) Ay VI Vxz) A(XVxyVxs)

12/1/2020 CS332 - Theory of Computation

18

Cligue

An clique in an undirected graph G is a set of vertices such that
every pair of vertices in the set are connectged via an edge.

Theorem: INDSET <, CLIQUE

12/1/2020 CS332 - Theory of Computation

Vertex Cover

Given an undirected graph G, a vertex cover in G is a subset of
nodes, which includes at least one endpoint of every edge.

VERTEX COVER= {{G, k) | G is an undirected graph which has a vertex cover with k
nodes}

* |s there vertex cover of size <47?

N

e |s there a vertex cover of size <37

L25.20

Independent Set and Vertex Cover

Claim. Sis an independent set iff V — S is a vertex cover.

* =
e Let S be anyindependent set.
e Consider an arbitrary edge (u, v).
* Sisindependent=>u g SorvgS = ueV-SorveV-S,
* Thus, V —S covers (u, v).

e Let V—S be any vertex cover.

* Considertwo nodesu € Sandv € S.

 Then(u, v) ¢ EsinceV—Sis a vertex cover.

* Thus, no two nodes in S are joined by an edge = S independent set. =

L25.21

INDEPENDENT SET reduces to VERTEX COVER

Theorem. INDEPENDENT-SET Sp VERTEX-COVER.

Proof. “On input (G, k), where G is an undirected graph and k is an
integer,

1. Output (G,n — k), where n is the number of nodes in G.”

Correctness:

* G has an independent set of size k iff it has a vertex cover of size
n—k.

* Reduction runs in linear time.

L25.22

Set Cover

Given a set U, called a universe, and a collection of its subsets
S1,S85, ..., 5, aset cover of U is a subcollection of subsets whose
union is U.

- seTcover={(U, Sy, S5, ..., S;y; k) | U has a set cover of size k}

U={1,23,4,567}

k=2

S,=1{3,7} S,=12, 4}

S,=1{3,4,5, 6} Se = {5}

S, = {1} Se= {1,2,6,7}

* Sample application.
* m available pieces of software.
* Set U of n capabilities that we would like our system to have.
* The ith piece of software provides the set S, — U of capabilities.
* Goal: achieve all n capabilities using fewest pieces of software.

L25.23

VERTEX COVER reduces to SET COVER

Theorem. VERTEX-COVER < p SET-COVER.

Proof. “Oninput (G, k), where G = (V, E) is an undirected graph
and k is an integer,

1. Output(U,S,,S,,...,S,,,; k), where U=E and for each v € V,

S, = {ecE | eisincidenttov}”’
Correctness:
* G has a vertex cover of size k iff U has a set cover of size k.

e Reduction runs in linear time.

L25.24

Proof of correctness for reduction

Let k = # clauses and [= # literals in ¢
Claim: @ is satisfiable iff G has an ind. set of size k

= Given a satisfying assignment, select one literal from each
triangle. This is an ind. set of size k

< Let S be an ind. set of size k
* S must contain exactly one vertex in each triangle

* Set these literals to true, and set all other variables in an arbitrary
way

* Truth assignment is consistent and all clauses satisfied

Runtime: O (k + [%) which is polynomial in input size

