### BU CS 332 – Theory of Computation

Lecture 22:

- NP completeness
- Clique, subset sum is NP-c

Reading: Sipser Ch 7.3-7.5

Ran Canetti December 1, 2020

# Polynomial-time reducibility

#### **Definition:**

A function  $f: \Sigma^* \to \Sigma^*$  is polynomial-time computable if there is a polynomial-time TM M which, given as input any  $w \in \Sigma^*$ , halts with only f(w) on its tape.

#### Definition:

Language A is polynomial-time mapping reducible to language B, written

$$A \leq_{p} B$$

if there is a polynomial-time computable function  $f: \Sigma^* \to \Sigma^*$ such that for all strings  $w \in \Sigma^*$ , we have  $w \in A \iff f(w) \in B$ 

### Implications of poly-time reducibility

#### **Theorem:** If $A \leq_p B$ and $B \in P$ , then $A \in P$ .

#### **Theorem:** If $A \leq_P B$ and $B \leq_P C$ , then $A \leq_P C$ .

#### NP-complete languages: The hardest in NP

A language B is **NP-complete** if

- 1.  $B \in NP$
- 2. B is NP-hard, i.e.,  $\forall A \in NP$ ,  $A \leq_p B$

(every language in NP is poly-time reducible to B.)

### NP-complete languages: The hardest in NP

A language B is **NP-complete** if

- 1.  $B \in NP$
- 2. B is NP-hard, i.e.,  $\forall A \in NP$ ,  $A \leq_p B$
- (every language in NP is poly-time reducible to B.)



### Implication of poly-time reductions

#### Theorem. If

- B is NP-complete,
- $C \in NP$  and
- $B \leq_p C$

then C is **NP**-complete.



# **Theorem.** If B is NP-complete and $B \in P$ then P = NP.

(So, if B is NP-complete and  $P \neq NP$ then there is no poly-time algorithm for B.)

#### An NP-Complete problem

$$T_{NTM} = \{(N, x, 1^t): NTM \ N \ accepts \ x \ within \ t \ steps\}$$

*T<sub>NTM</sub> Is NP-complete:* 

- $T_{NTM} \in NP$
- For all  $L \in NP$ ,  $L \leq_p T_{NTM}$  :

### Cook-Levin Theorem

Theorem: *SAT* (Boolean satisfiability) is NP-complete Proof: Already know  $SAT \in P$ . Need to show every problem in NP reduces to SAT



Stephen A. Cook (1971)



Leonid Levin (1973)

### Proof of Cook-Levin Theorem

- Proof idea
  - For each language A in NP, with a given input x for A, produce a Boolean formula φ that simulates the verification machine V for A on input x,w.

 $\Rightarrow \phi$  is satisfiable if and only if there exists w such that V(x,w)=1.

### Proof of Cook-Levin Theorem

- Proof idea:
  - -The tableau of the computation of V(x,w) is polysize
  - Have a variable describing each cell in the tableau
  - Can verify that the tableau is a legal accepting computation by checking only local conditions (windows of 2x3 cells)
    - all checks are constant side
    - poly-many checks
  - → Can combine the checks to a poly-size CNF formula



New NP-complete problems from old

Lemma: If  $A \leq_p B$  and  $B \leq_p C$ , then  $A \leq_p C$ (poly-time reducibility is <u>transitive</u>)

**Theorem:** If  $C \in NP$  and  $B \leq_p C$  for some NP-complete language B, then C is also NP-complete

#### Implication of poly-time reductions

#### Theorem. If

- B is NP-complete,
- $C \in NP$  and
- $B \leq_p C$

then C is **NP**-complete.



# New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!



# **3**SAT (3-CNF Satisfiability)

#### Definition(s):

- A literal either a variable of its negation
- A clause is a disjunction (OR) of literals Ex.  $x_5 \lor \overline{x_7} \lor x_2$
- A 3-CNF is a conjunction (AND) of clauses where each clause contains exactly 3 literals

Ex. 
$$C_1 \wedge C_2 \wedge ... \wedge C_m =$$
  
 $(x_5 \vee \overline{x_7} \vee x_2) \wedge (\overline{x_3} \vee x_4 \vee x_1) \wedge \cdots \wedge (x_1 \vee x_1 \vee x_1)$ 

 $3SAT = \{\langle \varphi \rangle | \varphi \text{ is a satisfiable } 3 - CNF \}$ 

 $x_{5}, x_{7}$ 

**3**SAT is NP-complete Theorem: 3SAT is NP-complete Proof idea: 1) 3SAT is in NP (why?) 2) Show that  $SAT \leq_p 3SAT$ Idea of reduction: Given a poly-time algorithm converting an arbitrary formula  $\varphi$  into a 3CNF  $\psi$  such that  $\varphi$  is

satisfiable iff  $\psi$  is satisfiable

### Independent Set

An **independent set** in an undirected graph G is a set of vertices such that no edge has both its endpoints in the set.

INDEPENDENT - SET

= { $\langle G, k \rangle | G$  is an undirected graph containing an independent set with  $\geq k$  vertices}

• Is there an independent set of size  $\geq$  6?

• Is there an independent set of size  $\geq$  7?



#### Independent Set is NP-complete

- 1)  $INDEPENDENT SET \in NP$
- 2) Reduce  $3SAT \leq_{p} INDEPENDENT SET$

**Proof.** "On input  $\langle \varphi \rangle$ , where  $\varphi$  is a 3CNF formula,

- 1. Construct graph G from  $\varphi$ 
  - *G* contains 3 vertices for each clause, one for each literal.
  - Connect 3 literals in a clause in a triangle.
  - Connect literal to each of its negations.
- 2. Output  $\langle G, k \rangle$ , where k is the number of clauses in  $\varphi$ ."

#### Example of the reduction

 $\varphi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3)$ 



An **clique** in an undirected graph G is a set of vertices such that every pair of vertices in the set are connectged via an edge.

Theorem:  $INDSET \leq_p CLIQUE$ 

#### Vertex Cover

Given an undirected graph G, a **vertex cover** in G is a subset of nodes, which includes at *least* one endpoint of every edge.

VERTEX COVER= { $\langle G, k \rangle$  | G is an undirected graph which has a vertex cover with k nodes}

• Is there vertex cover of size  $\leq 4$ ?

• Is there a vertex cover of size  $\leq$  3?



#### Independent Set and Vertex Cover

#### **Claim.** S is an independent set iff V – S is a vertex cover.

 $\bullet \Rightarrow$ 

- Let S be any independent set.
- Consider an arbitrary edge (u, v).
- S is independent  $\Rightarrow$  u  $\notin$  S or v  $\notin$  S  $\Rightarrow$  u  $\in$  V S or v  $\in$  V S.
- Thus, V S covers (u, v).



- Let V S be any vertex cover.
- Consider two nodes  $u \in S$  and  $v \in S$ .
- Then  $(u, v) \notin E$  since V S is a vertex cover.
- Thus, no two nodes in S are joined by an edge ⇒ S independent set.

#### INDEPENDENT SET reduces to VERTEX COVER

**Theorem.** INDEPENDENT-SET  $\leq_p$  VERTEX-COVER.

**Proof.** "On input  $\langle G, k \rangle$ , where G is an undirected graph and k is an integer,

1. Output  $\langle G, n - k \rangle$ , where *n* is the number of nodes in *G*."

#### Correctness:

- G has an independent set of size k iff it has a vertex cover of size n − k.
- Reduction runs in linear time.

#### Set Cover

Given a set U, called a *universe*, and a collection of its subsets  $S_1, S_2, ..., S_m$ , a **set cover** of U is a subcollection of subsets whose union is U.

• SET COVER={ $\langle U, S_1, S_2, ..., S_m; k \rangle$  | U has a set cover of size k}

U = { 1, 2, 3, 4, 5, 6, 7 } k = 2  $S_1 = \{3, 7\} S_4 = \{2, 4\}$   $S_2 = \{3, 4, 5, 6\} S_5 = \{5\}$  $S_3 = \{1\} S_6 = \{1, 2, 6, 7\}$ 

- Sample application.
  - m available pieces of software.
  - Set U of n capabilities that we would like our system to have.
  - The *i*th piece of software provides the set  $S_i \subseteq U$  of capabilities.
  - Goal: achieve all *n* capabilities using fewest pieces of software.

#### VERTEX COVER reduces to SET COVER

**Theorem.** vertex-cover  $\leq_{P}$  set-cover.

**Proof.** "On input  $\langle G, k \rangle$ , where G = (V, E) is an undirected graph and k is an integer,

1. Output 
$$\langle U, S_1, S_2, ..., S_m; k \rangle$$
, where U=E and for each  $v \in V$ ,  
 $S_v = \{e \in E \mid e \text{ is incident to } v\}^{"}$ 

#### Correctness:

- G has a vertex cover of size k iff U has a set cover of size k.
- Reduction runs in linear time.

### Proof of correctness for reduction

Let k = # clauses and l = # literals in  $\varphi$ 

Claim:  $\varphi$  is satisfiable iff G has an ind. set of size k

 $\Rightarrow$  Given a satisfying assignment, select one literal from each triangle. This is an ind. set of size k

 $\leftarrow \mathsf{Let} S \mathsf{ be an ind. set of size } k$ 

- *S* must contain exactly one vertex in each triangle
- Set these literals to true, and set all other variables in an arbitrary way
- Truth assignment is consistent and all clauses satisfied

Runtime:  $O(k + l^2)$  which is polynomial in input size

12/1/2020