
BU CS 332 – Theory of Computation

Lecture 21:

• NP completeness

• SAT is NP-c

• Clicque is NP-c

Reading:

Sipser Ch 7.3-7.4

Ran Canetti

November 24, 2020

Complexity class NP

Definition: NP is the class of languages decidable in
polynomial time on a nondeterministic TM

NP = 𝑘=1ڂ
∞ NTIME(𝑛𝑘)

11/19/2020 CS332 - Theory of Computation 2

An alternative characterization of NP

Definition: A TM 𝑉 is a verifier for language 𝐿 if:

- For any 𝑥 ∈ 𝐿, ∃𝑤 𝑠. 𝑡. 𝑉 𝑥, 𝑤 = 1

- If 𝑥 ∉ 𝐿, 𝑡ℎ𝑒𝑛 ∀𝑤, 𝑉 𝑥,𝑤 = 0

We say that 𝑉 is polynomial-time if its runtime is
polynomial in the length of its first input(i.e., length of 𝑥).

Theorem: A language 𝐿 ∈ NP iff there is a polynomial-
time verifier for 𝐿.

11/19/2020 CS332 - Theory of Computation 3

Is P = NP?

11/19/2020 CS332 - Theory of Computation 4

Is P = NP?

11/24/2020 CS332 - Theory of Computation 5

- We don’t have any reason to believe it is…

- There are many natural, important
problems in NP that we don’t know how to
solve in polynomial time.
(E.g. SAT, HamiltonPath, Clique, SubsetSum, …)

How can we prove that P ≠ NP ?

Natural route: Show a language L ∈ NP that cannot be
decided in polynomial time.

But:
• Which language is best to choose?
• How will that help us with all the problems that we cannot

solve in P?

Idea: Identify the “hardest” problems in NP
Find 𝐿 ∈ NP such that 𝐿 ∈ P iff P = NP

11/19/2020 CS332 - Theory of Computation 6

How can we prove that P ≠ NP ?

Natural route: Show a language L ∈ NP that cannot be
decided in polynomial time.

But:
• Which language is best to choose?
• How will that help us with all the problems that we cannot

solve in P?

Idea: Identify the “hardest” problems in NP
Find 𝐿 ∈ NP such that 𝐿 ∈ P iff P = NP

11/24/2020 CS332 - Theory of Computation 7

Recall: Mapping reducibility

Definition:

A function 𝑓: Σ∗ → Σ∗ is computable if there is a TM 𝑀
which, given as input any 𝑤 ∈ Σ∗, halts with only 𝑓(𝑤) on
its tape.

Definition:

Language 𝐴 is mapping reducible to language 𝐵, written
𝐴 ≤m 𝐵

if there is a computable function 𝑓: Σ∗ → Σ∗ such that for
all strings 𝑤 ∈ Σ∗, we have 𝑤 ∈ 𝐴⟺ 𝑓(𝑤) ∈ 𝐵

11/19/2020 CS332 - Theory of Computation 8

Polynomial-time reducibility

Definition:

A function 𝑓: Σ∗ → Σ∗ is polynomial-time computable if there
is a polynomial-time TM 𝑀 which, given as input any 𝑤 ∈ Σ∗,
halts with only 𝑓(𝑤) on its tape.

Definition:

Language 𝐴 is polynomial-time mapping reducible to
language 𝐵, written

𝐴 ≤p 𝐵

if there is a polynomial-time computable function 𝑓: Σ∗ → Σ∗

such that for all strings 𝑤 ∈ Σ∗, we have 𝑤 ∈ 𝐴⟺ 𝑓(𝑤) ∈ 𝐵

11/19/2020 CS332 - Theory of Computation 9

Implications of poly-time reducibility

Theorem: If 𝐴 ≤p 𝐵 and 𝐵 ∈ 𝑃, then 𝐴 ∈ 𝑃.

Theorem: If A P B and B P C, then A P C.

11/24/2020 CS332 - Theory of Computation 10

NP-complete languages: The hardest in NP

A language B is NP-complete if
1. 𝐵 ∈ 𝑁𝑃
2. 𝐵 is NP-hard, i.e., ∀ 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 𝐵

(every language in NP is poly-time reducible to B.)

NP-complete languages: The hardest in NP

L24.1211/24/2020

P NP

B

A language B is NP-complete if
1. 𝐵 ∈ 𝑁𝑃
2. 𝐵 is NP-hard, i.e., ∀ 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 𝐵

(every language in NP is poly-time reducible to B.)

Implication of poly-time reductions

Theorem. If

• B is NP-complete,

• C∈ 𝐍𝐏 and

• B≤𝑝C

then C is NP-complete.

Theorem. If B is NP-complete and B∈ 𝐏 then
𝐏 = 𝐍𝐏.

(So, if B is NP-complete and 𝐏 ≠ 𝐍𝐏

then there is no poly-time algorithm for B.)

L24.1311/24/2020

P NP
B

C

Implication of poly-time reductions

Theorem. If

• B is NP-complete,

• C∈ 𝐍𝐏 and

• B≤𝑝C

then C is NP-complete.

Theorem. If B is NP-complete and B∈ 𝐏 then
𝐏 = 𝐍𝐏.

(So, if B is NP-complete and 𝐏 ≠ 𝐍𝐏

then there is no poly-time algorithm for B.)

L24.1411/24/2020

NP-C problems: The hardest in NP

L24.1511/24/2020

P
NP

NP-complete

Different notions of reduction

Let 𝐿 ∈ 𝑁𝑃 . Is the statement "If L∈P then P=NP"

equivalent to “L is NP-Complete”?

11/24/2020 CS332 - Theory of Computation 16

Different notions of reduction

Let 𝐿 ∈ 𝑁𝑃 . Is the statement "If L∈P then P=NP"

equivalent to “L is NP-Complete”?

No!

-NP-C mandates a special form of reduction with nice
properties (“many to one reductions”, or “Karp
reductions”).

-More general (“Turing” or “Cook” reductions):

11/24/2020 CS332 - Theory of Computation 17

An NP-Complete problem

𝑇𝑁𝑇𝑀 = 𝑁, 𝑥, 1𝑡 : 𝑁𝑇𝑀 𝑁 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑥 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡 𝑠𝑡𝑒𝑝𝑠

𝑇𝑁𝑇𝑀 Is NP-complete:

• 𝑇𝑁𝑇𝑀 ∈ 𝑁𝑃

• For all 𝐿 ∈ 𝑁𝑃, 𝐿 ≤𝑝 𝑇𝑁𝑇𝑀 :

11/24/2020 CS332 - Theory of Computation 18

A more natural language : SAT

“Is there an assignment to the variables in a logical
formula that make it evaluate to true?”

• Boolean variable: Variable that can take on the value
true/false (encoded as 0/1)

• Boolean operations: ∧ AND , ∨ OR , ¬ (NOT)

• Boolean formula: Expression made of Boolean variables
and operations. Ex: (𝑥1 ∨ 𝑥2) ∧ 𝑥3

• An assignment of 0s and 1s to the variables satisfies a
formula 𝜑 if it makes the formula evaluate to 1

• A formula 𝜑 is satisfiable if there exists an assignment
that satisfies it

11/24/2020 CS332 - Theory of Computation 19

Examples of NP languages: SAT

Ex: (𝑥1 ∨ 𝑥2) ∧ 𝑥3 Satisfiable?

Ex: (𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥2) ∧ 𝑥2 Satisfiable?

𝑆𝐴𝑇 = { 𝜑 |𝜑 is a satisfiable formula}

Claim: 𝑆𝐴𝑇 ∈ NP

11/24/2020 CS332 - Theory of Computation 20

Cook-Levin Theorem

Theorem: 𝑆𝐴𝑇 (Boolean satisfiability) is NP-complete

Proof: Already know 𝑆𝐴𝑇 ∈ P. Need to show every
problem in NP reduces to 𝑆𝐴𝑇

11/19/2020 CS332 - Theory of Computation 21

Stephen A. Cook (1971)
Leonid Levin (1973)

Proof of Cook-Levin Theorem

• Proof idea
• For each language A in NP, with a given input x for A, produce a

Boolean formula φ that simulates the verification machine V
for A on input x,w.

 φ is satisfiable if and only if there exists w such that V(x,w)=1.

22Applied Algorithm Lab. KAIST

Proof of Cook-Levin Theorem

• Proof idea (cont.)
• If there exist w s.t. V(x,w)=1, then there exists a series of

configurations that results in the accept state, given x,w as the
input of V.

• We would construct a Boolean formula which is satisfiable if
there exists such w.

23Applied Algorithm Lab. KAIST

Proof of Cook-Levin Theorem

• Proof
• w: input

• A: language

• N: NP Turing machine that decides A
• Assume that N decides whether w∈A in nk steps, for some constant k.

24Applied Algorithm Lab. KAIST

Proof of Cook-Levin Theorem

• Proof (cont.)
• “nk×nk-cell”tableau for N on input x,w

q0 w1 w2 … wn ⊔ … ⊔

#

#

#

nk

nk

start configuration

second configuration

nk th configuration

25Applied Algorithm Lab. KAIST

Proof of Cook-Levin Theorem

• Proof (cont.)
• A variable could be represented as xi,j,s.

• xi,j,s: true if cell[i,j] is s; otherwise, false.

• cell[i,j]: the cell located on the ith row and the jth column.

26Applied Algorithm Lab. KAIST

Proof of Cook-Levin Theorem

• Proof (cont.)
• The tableau, without any restriction, can contain many invalid

series of configurations.

• e.g. cells containing multiple symbols, not starting with the
input w and start state q0, neighbor configurations not
corresponding the transition rules, not resulting in the accept
state, and etc.

27Applied Algorithm Lab. KAIST

x w1 q3 … wn ⊔ … ⊔

#

#

#

q0 w1 w2 … wn ⊔ … ⊔

x x q1 … wn ⊔ … ⊔

#

#

q0 w1 w2 … wn ⊔ … ⊔

x q1 w2 … wn ⊔ … ⊔

x x q1 … wn ⊔ … ⊔

⊔ ⊔ ⊔ … ⊔ ⊔ … ⊔

⊔ ⊔ ⊔ … ⊔ ⊔ … ⊔

q0q1 w1 w2 … wn ⊔ … ⊔

#

#

#

Proof of Cook-Levin Theorem

• Proof (cont.)
• Produce a Boolean formula which forces the tableau to be

valid and result in the accept state.

28Applied Algorithm Lab. KAIST

Proof of Cook-Levin Theorem

• Proof (cont.)
• One cell can contain exactly one symbol among a state, a tape

alphabet, and a #. (φcell)

• The first configuration should be corresponding to input w
and the start state q0. (φstart)

• A configuration is derivable from the immediately previous
configuration according to the transition rule of the Turing
machine. (φmove)

• There should exist a cell containing the accept state. (φaccept)

• φ=φcell∧φstart∧φmove∧φaccept

29Applied Algorithm Lab. KAIST

Proof of Cook-Levin Theorem

• Proof (cont.)
• φ=φcell∧φstart∧φmove∧φaccept

• φmove checks whether every 2×3 window is legal according to
the transition rule of the Turing machine.

30

…

#

#

… …

…

Applied Algorithm Lab. KAIST

q0 x y y y y

z q1 y y y y

Proof of Cook-Levin Theorem

• Proof (cont.)
• φ=φcell∧φstart∧φmove∧φaccept

• For example,
• δ(q1,a)={(q1,b,R)}, δ(q1,b)={(q2,c,L), (q2,a,R)}

a q1 b

q2 a c

a a q1

a a b

b a

b a

some examples of legal 2×3 windows

a b a

a a a

a q1 b

q1 a a

b q1 b

q2 b q2

some examples of illegal 2×3 windows

31Applied Algorithm Lab. KAIST

New NP-complete problems from old

Lemma: If 𝐴 ≤p 𝐵 and 𝐵 ≤p 𝐶, then 𝐴 ≤p 𝐶

(poly-time reducibility is transitive)

Theorem: If 𝐶 ∈ NP and 𝐵 ≤p 𝐶 for some NP-complete
language 𝐵, then 𝐶 is also NP-complete

11/19/2020 CS332 - Theory of Computation 32

New NP-complete problems from old

11/19/2020 CS332 - Theory of Computation 33

All problems below are NP-complete and hence poly-time reduce to one another!

SAT

3SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

by definition of NP-completeness

