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Complexity class NP

Definition: NP is the class of languages decidable in 
polynomial time on a nondeterministic TM

NP = 𝑘=1ڂ
∞ NTIME(𝑛𝑘)
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An alternative characterization of NP

Definition:  A TM 𝑉 is  a verifier for language 𝐿 if:

- For any 𝑥 ∈ 𝐿, ∃𝑤 𝑠. 𝑡. 𝑉 𝑥, 𝑤 = 1

- If 𝑥 ∉ 𝐿, 𝑡ℎ𝑒𝑛 ∀𝑤, 𝑉 𝑥,𝑤 = 0

We say that 𝑉 is polynomial-time if its runtime is 
polynomial in the length of its first input(i.e., length of 𝑥).

Theorem: A language 𝐿 ∈ NP iff there is a polynomial-
time verifier for 𝐿.
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Is P = NP? 
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Is P = NP? 
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- We don’t have any reason to believe it is…

- There are many natural, important 
problems in NP that we don’t know how to 
solve  in polynomial time.
(E.g. SAT, HamiltonPath, Clique, SubsetSum, … )



How can we prove that P ≠ NP ?

Natural route:  Show a language L ∈ NP that cannot be 
decided in polynomial time.   

But:  
• Which language is best to choose?   
• How will that help us with all the problems that we cannot 

solve in P? 

Idea: Identify the “hardest” problems in NP
Find 𝐿 ∈ NP such that 𝐿 ∈ P iff P = NP
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Recall: Mapping reducibility

Definition:

A function 𝑓: Σ∗ → Σ∗ is computable if there is a TM 𝑀
which, given as input any 𝑤 ∈ Σ∗, halts with only 𝑓(𝑤) on 
its tape.

Definition:

Language 𝐴 is mapping reducible to language 𝐵, written
𝐴 ≤m 𝐵

if there is a computable function 𝑓: Σ∗ → Σ∗ such that for 
all strings 𝑤 ∈ Σ∗, we have 𝑤 ∈ 𝐴⟺ 𝑓(𝑤) ∈ 𝐵
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Polynomial-time reducibility

Definition:

A function 𝑓: Σ∗ → Σ∗ is polynomial-time computable if there 
is a polynomial-time TM 𝑀 which, given as input any 𝑤 ∈ Σ∗, 
halts with only 𝑓(𝑤) on its tape.

Definition:

Language 𝐴 is polynomial-time mapping reducible to 
language 𝐵, written

𝐴 ≤p 𝐵

if there is a polynomial-time computable function 𝑓: Σ∗ → Σ∗

such that for all strings 𝑤 ∈ Σ∗, we have 𝑤 ∈ 𝐴⟺ 𝑓(𝑤) ∈ 𝐵
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Implications of poly-time reducibility

Theorem: If 𝐴 ≤p 𝐵 and 𝐵 ∈ 𝑃, then 𝐴 ∈ 𝑃.

Theorem: If A  P B and B P C, then A  P C.
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NP-complete languages: The hardest in NP

A language B is NP-complete if
1. 𝐵 ∈ 𝑁𝑃
2. 𝐵 is NP-hard,   i.e., ∀ 𝐴 ∈ 𝑁𝑃, 𝐴 ≤𝑝 𝐵

(every language in NP is poly-time reducible to B.) 



NP-complete languages: The hardest in NP
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A language B is NP-complete if
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Implication of poly-time reductions

Theorem. If 

• B is NP-complete, 

• C∈ 𝐍𝐏 and 

• B≤𝑝C

then C is NP-complete.

Theorem. If B is NP-complete and B∈ 𝐏 then 
𝐏 = 𝐍𝐏.

(So, if B is NP-complete and 𝐏 ≠ 𝐍𝐏

then there is no poly-time algorithm for B.)
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NP-C problems:  The hardest in NP

L24.1511/24/2020

P
NP

NP-complete



Different notions of reduction

Let 𝐿 ∈ 𝑁𝑃 . Is the statement "If L∈P then P=NP"

equivalent to “L is NP-Complete”? 
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Different notions of reduction

Let 𝐿 ∈ 𝑁𝑃 . Is the statement "If L∈P then P=NP"

equivalent to “L is NP-Complete”? 

No!  

-NP-C  mandates a special form of reduction with nice 
properties  (“many to one reductions”,  or “Karp 
reductions”).

-More  general  (“Turing”  or “Cook” reductions):

11/24/2020 CS332 - Theory of Computation 17



An NP-Complete problem

𝑇𝑁𝑇𝑀 = 𝑁, 𝑥, 1𝑡 : 𝑁𝑇𝑀 𝑁 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑥 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡 𝑠𝑡𝑒𝑝𝑠

𝑇𝑁𝑇𝑀 Is NP-complete:

• 𝑇𝑁𝑇𝑀 ∈ 𝑁𝑃

• For all 𝐿 ∈ 𝑁𝑃, 𝐿 ≤𝑝 𝑇𝑁𝑇𝑀 :
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A more natural language : SAT

“Is there an assignment to the variables in a logical 
formula that make it evaluate to true?”

• Boolean variable: Variable that can take on the value 
true/false (encoded as 0/1)

• Boolean operations: ∧ AND , ∨ OR , ¬ (NOT)

• Boolean formula: Expression made of Boolean variables 
and operations. Ex: (𝑥1 ∨ 𝑥2) ∧ 𝑥3

• An assignment of 0s and 1s to the variables satisfies a 
formula 𝜑 if it makes the formula evaluate to 1

• A formula 𝜑 is satisfiable if there exists an assignment 
that satisfies it
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Examples of NP languages: SAT

Ex: (𝑥1 ∨ 𝑥2) ∧ 𝑥3 Satisfiable?

Ex: (𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥2) ∧ 𝑥2 Satisfiable?

𝑆𝐴𝑇 = { 𝜑 |𝜑 is a satisfiable formula}

Claim: 𝑆𝐴𝑇 ∈ NP
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Cook-Levin Theorem

Theorem: 𝑆𝐴𝑇 (Boolean satisfiability) is NP-complete

Proof: Already know 𝑆𝐴𝑇 ∈ P. Need to show every 
problem in NP reduces to 𝑆𝐴𝑇
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Stephen A. Cook (1971)
Leonid Levin (1973)



Proof of Cook-Levin Theorem

• Proof idea
• For each language A in NP, with a given input x for A, produce a 

Boolean formula φ that simulates the verification machine V 
for A on input x,w.

 φ  is satisfiable if and only if  there exists w such that V(x,w)=1.
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Proof of Cook-Levin Theorem

• Proof idea (cont.)
• If there exist w s.t. V(x,w)=1, then there exists a series of 

configurations that results in the accept state, given x,w as the 
input of V.

• We would construct a Boolean formula which is satisfiable if 
there exists such w.
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Proof of Cook-Levin Theorem

• Proof
• w: input

• A: language

• N: NP Turing machine that decides A
• Assume that N decides whether w∈A in nk steps, for some constant k.

24Applied Algorithm Lab. KAIST



Proof of Cook-Levin Theorem

• Proof (cont.)
• “nk×nk-cell”tableau for N on input x,w

# q0 w1 w2 … wn ⊔ … ⊔ #

# #

# #

# #

nk

nk

start configuration

second configuration

nk th configuration
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Proof of Cook-Levin Theorem

• Proof (cont.)
• A variable could be represented as xi,j,s.

• xi,j,s: true if cell[i,j] is s; otherwise, false.

• cell[i,j]: the cell located on the ith row and the jth column.
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Proof of Cook-Levin Theorem

• Proof (cont.)
• The tableau, without any restriction, can contain many invalid 

series of configurations.

• e.g. cells containing multiple symbols, not starting with the 
input w and start state q0, neighbor configurations not 
corresponding the transition rules, not resulting in the accept 
state, and etc.
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# x w1 q3 … wn ⊔ … ⊔ #

# #

# #

# #

# q0 w1 w2 … wn ⊔ … ⊔ #

# x x q1 … wn ⊔ … ⊔ #

# #

# #

# q0 w1 w2 … wn ⊔ … ⊔ #

# x q1 w2 … wn ⊔ … ⊔ #

# x x q1 … wn ⊔ … ⊔ #

# ⊔ ⊔ ⊔ … ⊔ ⊔ … ⊔ #

# ⊔ ⊔ ⊔ … ⊔ ⊔ … ⊔ #

# q0q1 w1 w2 … wn ⊔ … ⊔ #

# #

# #

# #



Proof of Cook-Levin Theorem

• Proof (cont.)
• Produce a Boolean formula which forces the tableau to be 

valid and result in the accept state.

28Applied Algorithm Lab. KAIST



Proof of Cook-Levin Theorem

• Proof (cont.)
• One cell can contain exactly one symbol among a state, a tape 

alphabet, and a #. (φcell)

• The first configuration should be corresponding to input w 
and the start state q0. (φstart)

• A configuration is derivable from the immediately previous 
configuration according to the transition rule of the Turing 
machine. (φmove)

• There should exist a cell containing the accept state. (φaccept)

• φ=φcell∧φstart∧φmove∧φaccept
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Proof of Cook-Levin Theorem

• Proof (cont.)
• φ=φcell∧φstart∧φmove∧φaccept

• φmove checks whether every 2×3 window is legal according to 
the transition rule of the Turing machine.

30
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# … #
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# q0 x y y y y #

# z q1 y y y y #



Proof of Cook-Levin Theorem

• Proof (cont.)
• φ=φcell∧φstart∧φmove∧φaccept

• For example,
• δ(q1,a)={(q1,b,R)}, δ(q1,b)={(q2,c,L), (q2,a,R)}

a q1 b

q2 a c

a a q1

a a b

# b a

# b a

some examples of legal 2×3 windows 

a b a

a a a

a q1 b

q1 a a

b q1 b

q2 b q2

some examples of illegal 2×3 windows 
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New NP-complete problems from old

Lemma: If 𝐴 ≤p 𝐵 and 𝐵 ≤p 𝐶, then 𝐴 ≤p 𝐶

(poly-time reducibility is transitive) 

Theorem: If 𝐶 ∈ NP and 𝐵 ≤p 𝐶 for some NP-complete 
language 𝐵, then 𝐶 is also NP-complete
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New NP-complete problems from old
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All problems below are NP-complete and hence poly-time reduce to one another!

SAT

3SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

by definition of NP-completeness


