BU CS 332 — Theory of Computation

Lecture 21:
* NP completeness Reading:
e SAT is NP-c Sipser Ch 7.3-7.4

* Clicque is NP-c

Ran Canetti
November 24, 2020



Complexity class NP

Definition: NP is the class of languages decidable in
polynomial time on a nondeterministic TM

NP = Uj-; NTIME(n*)

11/19/2020 CS332 - Theory of Computation



An alternative characterization of NP

Definition: ATM V is a verifier for language L if:
-Foranyx € L, 3w s.t. V(ix,w) =1
-Ifx ¢ L, then Vw, V(x,w) =0

We say that V is polynomial-time if its runtime is
polynomial in the length of its first input(i.e., length of x).

Theorem: A language L € NP iff there is a polynomial-
time verifier for L.

11/19/2020 CS332 - Theory of Computation 3



s P =NP?

11/19/2020 CS332 - Theory of Computation



s P=NP?
We don’t have any reason to believe it is...

There are many natural, important
problems in NP that we don’t know how to

solve in polynomial time.
(E.g. SAT, HamiltonPath, Cligue, SubsetSum, ...)



How can we prove that P #= NP ?

Natural route: Show a language L € NP that cannot be
decided in polynomial time.

But:
* Which language is best to choose?

* How will that help us with all the problems that we cannot
solve in P?

11/19/2020 CS332 - Theory of Computation 6



How can we prove that P #= NP ?

Natural route: Show a language L € NP that cannot be
decided in polynomial time.

But:
* Which language is best to choose?

* How will that help us with all the problems that we cannot
solve in P?

|dea: Identify the “hardest” problems in NP
Find L € NP suchthatL € P iff P = NP

11/24/2020 CS332 - Theory of Computation 7



Recall: Mapping reducibility

Definition:
A function f: X* = X" is computable if thereisa TM M

which, given as input any w € X%, halts with only f(w) on
Its tape.

Definition:

Language A is mapping reducible to language B, written
A<, B

if there is a computable function f: X" — X" such that for
all stringsw € X%, wehavew € A< f(w) €B

11/19/2020 CS332 - Theory of Computation 8



Polynomial-time reducibility

Definition:

A function f: X* = X" is polynomial-time computable if there
is a polynomial-time TM M which, given as input any w € X7,
halts with only f(w) on its tape.

Definition:

Language A is polynomial-time mapping reducible to

language B, written
A<,B

if there is a polynomial-time computable function f:X* - X*
such that for all stringsw € £*, wehavew € A & f(w) € B

11/19/2020 CS332 - Theory of Computation 9



Implications of poly-time reducibility

Theorem: If A <p B and B € P,then A € P.

Theorem: If A<, Band B<,C,thenA<,C

11/24/2020 CS332 - Theory of Computation

10



NP-complete languages: The hardest in NP

A language B is NP-complete if
1. BENP
2. BisNP-hard, i.e, VAENP, A<, B

(every language in NP is poly-time reducible to B.)



NP-complete languages: The hardest in NP

A language B is NP-complete if
1. BENP
2. BisNP-hard, ie, VAENP, A<, B

(every language in NP is poly-time reducible to B.)

—————
- ~~

R

11/24/2020



Implication of poly-time reductions

Theorem. If

* B is NP-complete,

« Ce NP and

* B<,C

then Cis NP-complete.

\ < NP
el

A

O

11/24/2020

L24.13



Implication of poly-time reductions

Theorem. If

* B is NP-complete,
 Ce NP and

* B<,C

then Cis NP-complete.

Theorem. If B is NP-complete and BE P then
P = NP.

(So, if B is NP-complete and P #= NP
then there is no poly-time algorithm for B.)

11/24/2020 L24.14



NP-C problems: The hardest in NP

11/24/2020 L24.15



Different notions of reduction

Let L € NP . Is the statement "If LEP then P=NP"
equivalent to “L is NP-Complete”?

11/24/2020 CS332 - Theory of Computation

16



Different notions of reduction

Let L € NP . Is the statement "If LEP then P=NP"
equivalent to “L is NP-Complete”?

No!

-NP-C mandates a special form of reduction with nice
properties (“many to one reductions”, or “Karp
reductions”).

-More general (“Turing” or “Cook” reductions):



An NP-Complete problem

Tntm = {(N,x,1Y): NTM N accepts x within t steps}
Tyt Is NP-complete:

* Tyt €E NP
*Forall L€ NP, L <, Tyry -

11/24/2020 CS332 - Theory of Computation 18



A more natural language : SAT

“Is there an assignment to the variables in a logical
formula that make it evaluate to true?”

* Boolean variable: Variable that can take on the value
true/false (encoded as 0/1)

* Boolean operations: A (AND), Vv (OR), = (NOT)

* Boolean formula: Expression made of Boolean variables
and operations. Ex: (x; VX5) A X3

* An assignment of Os and 1s to the variables satisfies a
formula ¢ if it makes the formula evaluate to 1

* A formula @ is satisfiable if there exists an assighment
that satisfies it

11/24/2020 CS332 - Theory of Computation 19



Examples of NP languages: SAT

Ex: (x; VX3) A X3 Satisfiable?

Ex: (x{ VX)) A(x1 VX)) AN Xy Satisfiable?

SAT = {{@)|¢@ is a satisfiable formula}

Claim: SAT € NP

11/24/2020 CS332 - Theory of Computation 20



Cook-Levin Theorem

Theorem: SAT (Boolean satisfiability) is NP-complete

Proof: Already know SAT € P. Need to show every
problem in NP reduces to SAT

Stephen A. Cook (1971)

Leonid Levin (1973)

11/19/2020 CS332 - Theory of Computation 21



Proof of Cook-Levin Theorem

* Proof idea

* For each language A in NP, with a given input x for A, produce a
Boolean formula ¢ that simulates the verification machine V
for A on input x,w.

=> ¢ is satisfiable if and only if there exists w such that V(x,w)=1.

AppliedAlgorithm Lab. KAIST 22



Proof of Cook-Levin Theorem

* Proof idea (cont.)

* |f there exist w s.t. V(x,w)=1, then there exists a series of
configurations that results in the accept state, given x,w as the
input of V.

 We would construct a Boolean formula which is satisfiable if
there exists such w.

AppliedAlgorithm Lab. KAIST 23



Proof of Cook-Levin Theorem

* Proof
* W: input
* A:language
* N: NP Turing machine that decides A
* Assume that N decides whether we€A in n¥ steps, for some constant k.

AppliedAlgorithm Lab. KAIST 24



Proof of Cook-Levin Theorem

* Proof (cont.)

I”

* “nkxnk-cell”tableau for N on input x,w

o | W; W, .. |w, U .. | U  # | start configuration
H second configuration
nk
# # | nkth configuration
nk

AppliedAlgorithm Lab. KAIST 25



Proof of Cook-Levin Theorem

* Proof (cont.)

* Avariable could be represented as x; ; .

* X;; s true if cell[i,j] is s; otherwise, false.

* cell[i,j]: the cell located on the ith row and the jth column.

AppliedAlgorithm Lab. KAIST

26



qoql W]_ W2 W LI Ll #

itain many invalid

arting with the
_ N ) # ations not
corresponding the transition rules, not resulting in the accept
state, and etc.

AppliedAlgorithm Lab. KAIST 27



Proof of Cook-Levin Theorem

* Proof (cont.)

 Produce a Boolean formula which forces the tableau to be
valid and result in the accept state.

AppliedAlgorithm Lab. KAIST

28



Proof of Cook-Levin Theorem

* Proof (cont.)

* One cell can contain exactly one symbol among a state, a tape
alphabet, and a #. (p_,)

* The first configuration should be corresponding to input w
and the start state q,. (b, )

* A configuration is derivable from the immediately previous
configuration according to the transition rule of the Turing
machine. (&,,oye)

* There should exist a cell containing the accept state. (¢
* cI)zd)celI/\d)start/\d)move/\d)accept

accept)

AppliedAlgorithm Lab. KAIST 29



Proof of Cook-Levin Theorem

* Proof (cont.)

* (b:d)celI/\d)start/\cbmove/\d)accept

* v Checks whether every 2x3 window is legal according to
the transition rule of the Turing machine.

# #
# #
#lafpx Iy QY [y 'y # H H
# Lz faJpy |y [y y #
\ %
# #

AppliedAlgorithm Lab. KAIST 30



Proof of Cook-Levin Theorem

* Proof (cont.)

* (b:d)celI/\d)start/\cbmove/\d)accept
* For example,

* 8(qgy,a)={(ay,b,R)}, 6(ay,b)={(a,,c,L), (a,,3,R)}

a q, b a a a, # b
q, a C a a b # b

some examples of legal 2 X 3 windows

a b a a q, b b d,
a a a q, a a qQ, b

some examples of illegal 2 X 3 windows

AppliedAlgorithm Lab. KAIST



New NP-complete problems from old

Lemma: If A <p B and B <p C, then A <p C

(poly-time reducibility is transitive)

Theorem: If C € NP and B <, C for some NP-complete
language B, then C is also NP-complete

11/19/2020 CS332 - Theory of Computation 32



New NP-complete problems from old

All problems below are NP-complete and hence poly-time reduce to one another!

by definition of NP-completeness

> SAT <

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM
VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
SET COVER TSP -

11/19/2020 CS332 - Theory of Computation 33



