
BU CS 332 – Theory of Computation

Lecture 20:

• More on NP Reading:

Sipser Ch 7.3-7.4

Ran Canetti

November 19, 2020

Goals of complexity theory
Ultimate goal: Classify problems according to their feasibility and
inherent computational difficulty

P ≈ Decision problems which can be solved “efficiently”.

Are there decidable problems not in P?

Yes: Some problems provably require exponential time! (Chapter 9)

Can we decide if a given problem is in P?

How about problems where solutions are efficiently verifiable?

11/19/2020 CS332 - Theory of Computation 2

Nondeterministic Time
and NP

11/19/2020 CS332 - Theory of Computation 3

NTIME explicitly

A language 𝐴 ∈ NTIME(𝑓(𝑛)) if there exists an NTM 𝑀
such that, on every input 𝑥 ∈ Σ∗

1. Every computational branch of 𝑀 halts in either the
accept or reject state within 𝑓(𝑥) steps

2. 𝑥 ∈ 𝐴 iff there exists an accepting computational
branch of 𝑀 on input 𝑤

3. x∉ 𝐴 iff every computational branch of 𝑀 rejects on
input 𝑥 (or dies with no applicable transitions)

11/19/2020 CS332 - Theory of Computation 4

Deterministic vs. nondeterministic time

11/19/2020 CS332 - Theory of Computation 5

Deterministic Nondeterministic

accept or reject reject

accept

𝒕(𝒏)

reject

accept

reject

Deterministic vs. nondeterministic time

11/19/2020 CS332 - Theory of Computation 6

Theorem: Let 𝑡 𝑛 ≥ 𝑛 be a function. Every NTM running
in time 𝑡 𝑛 has an equivalent single-tape TM running in
time 2𝑂(𝑡 𝑛)

Complexity class NP

Definition: NP is the class of languages decidable in
polynomial time on a nondeterministic TM

NP = 𝑘=1ڂ
∞ NTIME(𝑛𝑘)

11/19/2020 CS332 - Theory of Computation 7

An alternative characterization of NP

Definition: A TM 𝑉 is a verifier for language 𝐿 if:

- For any 𝑥 ∈ 𝐿, ∃𝑤 𝑠. 𝑡. 𝑉 𝑥, 𝑤 = 1

- If 𝑥 ∉ 𝐿, 𝑡ℎ𝑒𝑛 ∀𝑤, 𝑉 𝑥,𝑤 = 0

We say that 𝑉 is polynomial-time if its runtime is
polynomial in the length of its first input(i.e., length of 𝑥).

11/19/2020 CS332 - Theory of Computation 8

An alternative characterization of NP

Definition: A TM 𝑉 is a verifier for language 𝐿 if:

- For any 𝑥 ∈ 𝐿, ∃𝑤 𝑠. 𝑡. 𝑉 𝑥, 𝑤 = 1

- If 𝑥 ∉ 𝐿, 𝑡ℎ𝑒𝑛 ∀𝑤, 𝑉 𝑥,𝑤 = 0

We say that 𝑉 is polynomial-time if its runtime is
polynomial in the length of its first input(i.e., length of 𝑥).

Theorem: A language 𝐿 ∈ NP iff there is a polynomial-
time verifier for 𝐿

11/19/2020 CS332 - Theory of Computation 9

11/19/2020 CS332 - Theory of Computation 10

Theorem: A language 𝐿 ∈ NP iff there is a polynomial-time verifier for 𝐿

Problem in NP: Hamiltonian Path

𝐻𝐴𝑀𝑃𝐴𝑇𝐻 = 𝐺, 𝑠, 𝑡 𝐺 is a directed graph and there

is a path from 𝑠 to 𝑡 that passes
through every vertex exactly once}

11/19/2020 CS332 - Theory of Computation 11

𝑠 𝑡

𝐻𝐴𝑀𝑃𝐴𝑇𝐻 has a polynomial-time verifier

Certificate 𝑐:

Verifier 𝑉:

On input 𝐺, 𝑠, 𝑡; 𝑐 : (Vertices of 𝐺 are numbers 1,… , 𝑘)

1. Check that 𝑐1, 𝑐2, … , 𝑐𝑘 is a permutation: Every
number 1,… , 𝑘 appears exactly once

2. Check that 𝑐1 = 𝑠, 𝑐𝑘 = 𝑡, and there is an edge
from every 𝑐𝑖 to 𝑐𝑖+1

3. Accept if all checks pass, otherwise, reject.

11/19/2020 CS332 - Theory of Computation 12

Examples of NP languages: SAT

“Is there an assignment to the variables in a logical
formula that make it evaluate to true?”

• Boolean variable: Variable that can take on the value
true/false (encoded as 0/1)

• Boolean operations: ∧ AND , ∨ OR , ¬ (NOT)

• Boolean formula: Expression made of Boolean variables
and operations. Ex: (𝑥1 ∨ 𝑥2) ∧ 𝑥3

• An assignment of 0s and 1s to the variables satisfies a
formula 𝜑 if it makes the formula evaluate to 1

• A formula 𝜑 is satisfiable if there exists an assignment
that satisfies it

11/19/2020 CS332 - Theory of Computation 13

Examples of NP languages: SAT

Ex: (𝑥1 ∨ 𝑥2) ∧ 𝑥3 Satisfiable?

Ex: (𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ 𝑥2) ∧ 𝑥2 Satisfiable?

𝑆𝐴𝑇 = { 𝜑 |𝜑 is a satisfiable formula}

Claim: 𝑆𝐴𝑇 ∈ NP

11/19/2020 CS332 - Theory of Computation 14

Examples of NP languages: TSP

“Given a list of cities and distances between them, is
there a ‘short’ tour of all of the cities?”

More precisely: Given

• A number of cities 𝑚

• A function 𝐷: {1, … ,𝑚} 2→ ℕ giving the distance
between each pair of cities

• A distance bound 𝐵

𝑇𝑆𝑃 = { 𝑚,𝐷, 𝐵 |∃ a tour visiting every city

with length ≤ 𝐵}

11/19/2020 CS332 - Theory of Computation 15

P vs. NP

Question: Does P = NP?

Philosophically: Can every problem with an efficiently

verifiable solution also be solved efficiently?

A central problem in mathematics

and computer science

11/19/2020 CS332 - Theory of Computation 16

EXP NP

P

If P  NP If P = NP

EXP

P = NP

A world where P = NP

• Many important decision problems can be solved in
polynomial time (𝐻𝐴𝑀𝑃𝐴𝑇𝐻, 𝑆𝐴𝑇, 𝑇𝑆𝑃, etc.)

• Many search problems can be solved in polynomial time
(e.g., given a natural number, find a prime factorization)

• Many optimization problems can be solved in polynomial
time (e.g., find the lowest energy conformation of a
protein)

11/19/2020 CS332 - Theory of Computation 17

A world where P = NP

• Secure cryptography becomes impossible

An NP search problem: Given a ciphertext 𝐶, find a plaintext
𝑚 and encryption key 𝑘 that would encrypt to 𝐶

• AI / machine learning become easy: Identifying a consistent
classification rule is an NP search problem

• Finding mathematical proofs becomes easy: NP search
problem: Given a mathematical statement 𝑆 and length
bound 𝑘, is there a proof of 𝑆 with length at most 𝑘?

General consensus: P ≠ NP

11/19/2020 CS332 - Theory of Computation 18

NP Completeness

11/19/2020 CS332 - Theory of Computation 19

What about a world where P ≠ NP

Believe this to be true, but very far from proving it

P ≠ NP implies that there is a problem in NP which
cannot be solved in polynomial time, but it might not be a
useful one

Question: What would P ≠ NP allow us to conclude about
problems we care about?

Idea: Identify the “hardest” problems in NP

Find 𝐿 ∈ NP such that 𝐿 ∈ P iff P = NP

11/19/2020 CS332 - Theory of Computation 20

Recall: Mapping reducibility

Definition:

A function 𝑓: Σ∗ → Σ∗ is computable if there is a TM 𝑀
which, given as input any 𝑤 ∈ Σ∗, halts with only 𝑓(𝑤) on
its tape.

Definition:

Language 𝐴 is mapping reducible to language 𝐵, written
𝐴 ≤m 𝐵

if there is a computable function 𝑓: Σ∗ → Σ∗ such that for
all strings 𝑤 ∈ Σ∗, we have 𝑤 ∈ 𝐴⟺ 𝑓(𝑤) ∈ 𝐵

11/19/2020 CS332 - Theory of Computation 21

Polynomial-time reducibility

Definition:

A function 𝑓: Σ∗ → Σ∗ is polynomial-time computable if there
is a polynomial-time TM 𝑀 which, given as input any 𝑤 ∈ Σ∗,
halts with only 𝑓(𝑤) on its tape.

Definition:

Language 𝐴 is polynomial-time mapping reducible to
language 𝐵, written

𝐴 ≤p 𝐵

if there is a polynomial-time computable function 𝑓: Σ∗ → Σ∗

such that for all strings 𝑤 ∈ Σ∗, we have 𝑤 ∈ 𝐴⟺ 𝑓(𝑤) ∈ 𝐵

11/19/2020 CS332 - Theory of Computation 22

Implications of poly-time reducibility

Theorem: If 𝐴 ≤p 𝐵 and 𝐵 ∈ 𝑃, then 𝐴 ∈ 𝑃

Proof:

11/19/2020 CS332 - Theory of Computation 23

Cook-Levin Theorem and
NP-Complete Problems

11/19/2020 CS332 - Theory of Computation 24

Cook-Levin Theorem

Theorem: 𝑆𝐴𝑇 (Boolean satisfiability) is NP-complete

Proof: Already know 𝑆𝐴𝑇 ∈ P. Need to show every
problem in NP reduces to 𝑆𝐴𝑇 (later?)

11/19/2020 CS332 - Theory of Computation 25

Stephen A. Cook (1971)
Leonid Levin (1973)

New NP-complete problems from old

Lemma: If 𝐴 ≤p 𝐵 and 𝐵 ≤p 𝐶, then 𝐴 ≤p 𝐶

(poly-time reducibility is transitive)

Theorem: If 𝐶 ∈ NP and 𝐵 ≤p 𝐶 for some NP-complete
language 𝐵, then 𝐶 is also NP-complete

11/19/2020 CS332 - Theory of Computation 26

New NP-complete problems from old

11/19/2020 CS332 - Theory of Computation 27

All problems below are NP-complete and hence poly-time reduce to one another!

SAT

3SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

by definition of NP-completeness

