BU CS 332 – Theory of Computation

Lecture 16:

Reductions:

- Via Computational History
- Mapping Reductions
- Post's correspondence game

Ran Canetti

November 3, 2020

Reading: Sipser Ch. 5

Problems in language theory

Equality Testing for TMs

Equality Testing for TMs

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EQ_{TM} . We construct a decider for A_{TM} as follows: On input $\langle M, w \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1 = M_2 =$$

2. Run *R* on input $\langle M_1, M_2 \rangle$ 3. If *R* accepts, accept. Otherwise, reject. This is a reduction from A_{TM} to EQ_{TM}

Problems in language theory

A _{DFA}	A _{CFG}	A _{TM}
decidable	decidable	undecidable
E _{DFA}	E _{CFG}	E _{TM}
decidable	decidable	undecidable
EQ _{DFA} decidable	EQ _{CFG} ?	EQ _{TM} \ undecidable

TATL { 2M, W, t> | Macepts W within 2 steps f of computation

is TA, decidable!

U(M, W) ofor t steps Ro decideble:

What's wrong with the following "proof"? Bogus "Theorem": A_{TM} is not Turing-recognizable Bogus "Proof": Suppose for contradiction that there exists a recognizer R for A_{TM} . We construct a recognizer for $\overline{A_{TM}}$:

On input
$$\langle M, w \rangle$$
:
1. Run \widehat{R} on input $\langle M, w \rangle$
2. If R accepts, reject. Otherwise, accept.

This sure looks like a reduction from $\overline{A_{TM}}$ to A_{TM}

Mapping Reductions

"many to one" reductions

Mapping Reductions: Motivation

- 1. How do we formalize the notion of a reduction?
- 2. How do we use reductions to show that languages are unrecognizable?
- 3. How do we protect ourselves from accidentally "proving" bogus theorems about recognizability?

Computable Functions

Definition:

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is a TM M which, given as input any $w \in \Sigma^*$, halts with only f(w) on its tape.

Example 1:
$$f(\langle x_0, y \rangle) \neq x + y_{>}$$

Example 2: $f(\langle M, w \rangle) = \langle M' \rangle$ where *M* is a TM, *w* is a string, and *M*' is a TM that ignores its input and simulates running *M* on *w*

Mapping Reductions

Definition:

Language A is mapping reducible to language B, written

1

if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings $w \in \Sigma^*$, we have $w \in A \Leftrightarrow f(w) \in B$

 $A \leq_{\mathrm{m}} B$

Decidability

Theorem: If $A \leq_m B$ and <u>B</u> is decidable, then A is also decidable \sim

Proof: Let *M* be a decider for *B* and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from *A* to *B*. Construct a decider for *A* as follows:

On input *w*:

- 1. Compute f(w)
- 2. Run M on input f(w)
- 3. If *M* accepts, accept. Otherwise, reject.

Theorem: If $A \leq_m B$ and B is decidable, then A is also decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is also undecidable

Old Proof: Equality Testing for TMs

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Theorem: EQ_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for EQ_{TM} . We construct a decider for A_{TM} as follows:

On input $\langle M, w \rangle$:

1. Construct TMs M_1 , M_2 as follows:

New Proof: Equality Testing for TMs

 $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ Theorem: $A_{TM} \leq_m EQ_{TM}$ hence EQ_{TM} is undecidable Proof: The following TM computes the reduction:

On input $\langle M, w \rangle$:

1. Construct TMs M_1 , M_2 as follows:

$$M_1 =$$
 "On input x ,

- 1. Ignore *x*
- 2. Run *M* on input *w*
- 3. If *M* accepts, accept.

Otherwise, reject."

2. Output $\langle M_1, M_2 \rangle$

 M_2 = "On input x, 1 Janore x and accent"

1. Ignore x and accept"

Mapping Reductions: Recognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable

Proof: Let *M* be a recognizer for *B* and let $f: \Sigma^* \to \Sigma^*$ be a mapping reduction from *A* to *B*. Construct a recognizer for *A* as follows:

On input *w*:

- 1. Compute f(w)
- 2. Run M on input f(w)
- 3. If *M* accepts, accept. Otherwise, reject.

Unrecognizability

Theorem: If $A \leq_m B$ and B is recognizable, then A is also recognizable

Corollary: If $A \leq_m B$ and \underline{A} is unrecognizable, then \underline{B} is also unrecognizable

Corollary: If $\overline{A_{TM}} \leq_m B$, then B is unrecognizable

1. Since A_{TM} is undecidable, EQ_{TM} is also undecidable

2. $A_{TM} \leq_m EQ_{TM}$ implies $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ Since $\overline{A_{TM}}$ is unrecognizable, $\overline{EQ_{TM}}$ is unrecognizable

 $EQ_{TM} \text{ itself is also unrecognizable}$ $EQ_{TM} = \{\langle M_1, M_2 \rangle | M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$ Theorem: $A_{TM} \leq_m EQ_{TM}$ hence EQ_{TM} is unrecognizable Proof: The following TM computes the reduction:

On input $\langle M, w \rangle$:

- 1. Construct TMs M_1 , M_2 as follows:
 - M_1 = "On input x,
 - 1. Ignore *x*
 - 2. Run *M* on input *w*
 - 3. If *M* accepts, accept. Otherwise, reject."
- 2. Output $\langle M_1, M_2 \rangle$

M₂ = "On input x, 1. Ignore x and accept"

More on Reductions and Undecidability

Problems in language theory

A _{DFA}	A _{CFG}	A _{TM}
decidable	decidable	undecidable
E _{DFA}	E _{CFG}	E _{TM}
decidable	decidable	undecidable
EQ _{DFA} decidable	EQ _{CFG} ?	EQ _{TM} undecidable

Undecidable problems outside language theory

Post Correspondence Problem (PCP):

Domino: $\left| \frac{a}{ab} \right|$. Top and bottom are strings.

Input: Collection of dominos.

 $\begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} ab \\ aba \end{bmatrix}, \begin{bmatrix} ba \\ aa \end{bmatrix}, \begin{bmatrix} abab \\ b \end{bmatrix}$

Match: List of some of the input dominos (repetitions allowed) where top = bottom

$$\begin{bmatrix} ab \\ aba \end{bmatrix}, \begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} ba \\ aa \end{bmatrix}, \begin{bmatrix} aa \\ aba \end{bmatrix}, \begin{bmatrix} aa \\ b \end{bmatrix}$$

Problem: Does a match exist?

This is undecidable

Nent a mapping f(M, N) -> 1) 1717で7 S) of how call 3 3 solution M(v) the suttilled => > > > > > as I loc: learge Ma domino's st. any legel configuration and encede a tegel sequer of cark- of remo 1-----

11/3/2020

.

ALL_{CFG} is undecidable

 $ALL_{CFG} = \{\langle G \rangle | G \text{ is a CFG with terminal set } \Sigma \\and L(G) = \Sigma^* \}$

Theorem: $\overline{A_{TM}} \leq_{m} EQ_{CFG}$ hence EQ_{CFG} is undecidable Proof idea: "Computation history method" On input $\langle M, w \rangle$:

1. Construct a CFG G such that: $L(G) = \Sigma^* \iff M$ does not accept w

2. Output $\langle G \rangle$

Problems in language theory

A_{DFA}	A _{CFG}	A _{TM}
decidable	decidable	undecidable
E _{DFA}	E _{CFG}	E _{TM}
decidable	decidable	undecidable
EQ _{DFA}	<i>EQ</i> _{CFG}	EQ _{TM}
decidable	undecidable	undecidable

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$ Theorem: A_{TM} is undecidable

 $A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Theorem: A_{TM} is undecidable Proof: Assume for the sake of contradiction that TM H decides A_{TM} :

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

 $A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Theorem: A_{TM} is undecidable Proof: Assume for the sake of contradiction that TM H decides A_{TM} :

$H(\langle M, w \rangle) =$	{ accept reject	if <i>M</i> accepts <i>w</i> if <i>M</i> does not accept <i>w</i>
Define		
$\overline{H}(\langle M, w \rangle) =$	{ reject accept	if <i>M</i> accepts <i>w</i> if <i>M</i> does not accept <i>w</i>

Consider $H(\langle \overline{H}, w \rangle)$

 $A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Theorem: A_{TM} is undecidable Proof: Assume for the sake of contradiction that TM H decides A_{TM} :

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

Define
$$\overline{H}(\langle M, w \rangle) = \begin{cases} \text{reject} & \text{if } M \text{ accepts } w \\ \text{accept} & \text{if } M \text{ does not accept } w \end{cases}$$

Consider $H(\langle \overline{H}, w \rangle)$: Has to run forever...

 \rightarrow *H* is not a decider.

An unrecognizable Language

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

 $(L \in \mathbf{R} \text{ if and only if both } L \in \mathbf{RE} \text{ and } \overline{L} \in \mathbf{RE})$

Corollary: If *L* is Turing-recognizable and undecidable then \overline{L} is not Turing-recognizable.

(If $L \in \mathbf{RE}$ and $L \notin \mathbf{R}$ then $\overline{L} \notin \mathbf{RE}$)

Classes of Languages: updated view

A specific unrecognizable Language

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Corollary: If *L* is Turing-recognizable and undecidable then \overline{L} is not Turing-recognizable.

Define:

- **R** = decidable languages
- *RE* = Turing-recognizable languages
- **co** $RE = \{L \mid \overline{L} \text{ is Turing recognizable}\}$

Enumerators

- Starts with two blank tapes
- Prints strings to printer
- $L(E) = \{ \text{strings eventually printed by } E \}$
- May never terminate (even if language is finite)
- May print the same string many times

Enumerable = Turing-Recognizable

Theorem: A language is Turing-recognizable ⇔ some enumerator enumerates it

Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A is also decidable

 $EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle | D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$ Theorem: EQ_{DFA} is decidable Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

- 1. Construct a DFA D that recognizes the symmetric difference $L(D_1) \Delta L(D_2)$
- 2. Run the decider for $E_{\rm DFA}$ on $\langle D \rangle$ and return its output

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$ Suppose *H* decides A_{TM}

Consider the following TM D. On input $\langle M \rangle$ where M is a TM:

- 1. Run *H* on input $\langle M, \langle M \rangle \rangle$
- 2. If *H* accepts, accept. If *H* rejects, reject.

Claim: *D* decides $SA_{TM} = \{\langle M \rangle \mid M \text{ is a TM that accepts on input } \langle M \rangle \}$

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Proof template:

- 1. Suppose to the contrary that *B* is decidable
- 2. Using B as a subroutine, construct an algorithm deciding A
- 3. But *A* is undecidable. Contradiction!

Halting Problem

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on input } w \}$

Theorem: *HALT*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider *H* for $HALT_{TM}$. We construct a decider for A_{TM} as follows: On input $\langle M, w \rangle$:

- 1. Run *H* on input $\langle M, w \rangle$
- 2. If *H* rejects, reject
- 3. If *H* accepts, simulate *M* on *w*
- 4. If *M* accepts, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $HALT_{\rm TM}$

Empty language testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: *E*_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $E_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

1. Construct a TM *M*' as follows:

2. Run *R* on input $\langle M' \rangle$

3. If *R* , accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Context-free language testing for TMs

 $CFL_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is context} - \text{free} \}$ **Theorem:** CFL_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for CFL_{TM} . We construct a decider for A_{TM} as follows: On input $\langle M, w \rangle$:

1. Construct a TM *M*' as follows:

Run *R* on input (*M*') If *R* accepts, accept. Otherwise, reject This is a reduction

This is a reduction from $A_{\rm TM}$ to $CFL_{\rm TM}$

Context-free language testing for TMs

 $CFL_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is context} - \text{free} \}$ **Theorem:** CFL_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for CFL_{TM} . We construct a decider for A_{TM} as follows: On input $\langle M, w \rangle$:

1. Construct a TM *M*' as follows:

M' = "On input x, $1. \text{ If } x \in \{0^n 1^n 2^n \mid n \ge 0\}, \text{ accept}$ 2. Run TM M on input w 3. If M accepts, accept." $2. \text{ Run } R \text{ on input } \langle M' \rangle$ 3. If R accepts, accept. Otherwise, reject

This is a reduction from A_{TM} to CFL_{TM}