BU CS 332 – Theory of Computation

Lecture 14:

- Unrecognizability
- Undecidability

Reading:

Sipser Ch. 4

Ran Canetti October 27, 2020

A general theorem about set sizes

Theorem: Let X be a set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a correspondence $f: X \to P(X)$

Construct a set $S \in P(X)$ that cannot be the output f(x) for any $x \in X$:

$$S = \{ x \in X \mid x \notin f(x) \}$$

If
$$S = f(y)$$
 for some $y \in X$,
then $y \in S$ if and only if $y \notin S$

Diagonalization argument

Assume a correspondence $f: X \to P(X)$

X	$x_1 \in f(x)$?	$x_2 \in f(x)$?	$x_3 \in f(x)$?	$x_4 \in f(x)$?	
x_1	X	Ŋ	<u>Y</u> ~	¥	
x_2	N	Z ,	Υ	Υ	
x_3	Υ	Υ	Υ	N	
x_4	N	N	Υ	N	
:_					*•

Define S by flipping the diagonal:

$$x_i \in S$$

$$\iff$$

Put
$$x_i \in S \iff x_i \notin f(x_i)$$

An Existential Proof

Theorem: There exists an unrecognizable language over $\{0,1\}$

Proof:

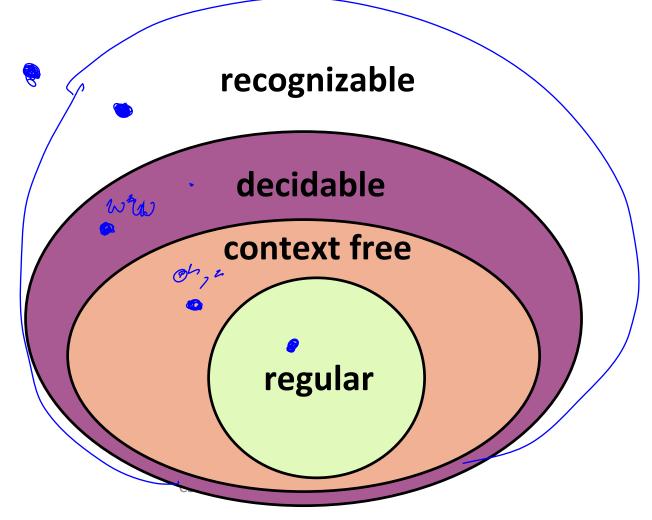
```
Set of all Turing machines: X \subseteq \{0,1\}^*
Set of all languages over \{0,1\} = all subsets of \{0,1\}^*
= P(X)
```

There are more languages than there are TMs!

Questions

Are there languages that are recognizable but not

decidable?



Questions

 Are there languages that are recognizable but not decidable?

 Are there any languages of interest that are unrecognizable/undecidable?

A Specific Undecidable Language

 $A_{\rm TM} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Theorem: $A_{\rm TM}$ is undecidable

Proof: Assume for the sake of contradiction that TM Hdecides A_{TM} :

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

Diagonalization: Use H to check what M does when given as input its own description...and do the opposite

A Specific Undecidable Language

 $A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$ Suppose \underline{H} decides A_{TM}

Consider the following TM D.

On input (M) where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. If H accepts, reject. If H rejects, accept.

Question: What does
$$D$$
 do on input $\langle D \rangle$?

D never helts

(SW2)=(N. 2 W(SW))A

How is this diagonalization?

TM M			
M_1			
M_2			
M_3			
M_4			
\ :			

How is this diagonalization?

TM M	$M(\langle M_1 \rangle)$?	$M(\langle M_2 \rangle)$?	$M(\langle M_3 \rangle)$?	$M(\langle M_4 \rangle)$?	
M_{1}	Y	N	Υ.	Y.	
M_2	_ N	Ŋ, ^	Υ	Υ	
M_3	Υ	Υ	Y	N	
M_4	N	N	Υ	N-	
÷				4	*••

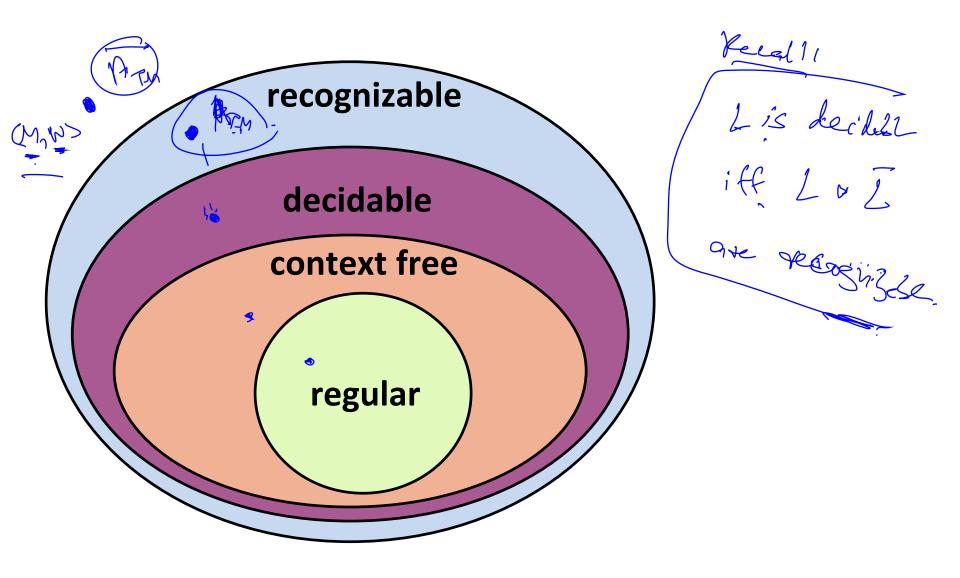
D accepts input $\langle M_i \rangle \iff M_i$ does not accept input $\langle M_i \rangle$

How is this diagonalization?

TM M	$M(\langle M_1 \rangle)$?	$M(\langle M_2 \rangle)$?	$M(\langle M_3 \rangle)$?	$M(\langle M_4 \rangle)$?		$D(\langle D \rangle)$?
M_1	Υ	N	Υ	Υ	•••	
M_2	N	Ν	Υ	Υ		
M_3	Y	Υ	Υ	N		
M_4	N	N	Υ	N		
i					٠.	
D						

D accepts input $\langle M_i \rangle \iff M_i$ does not accept input $\langle M_i \rangle$

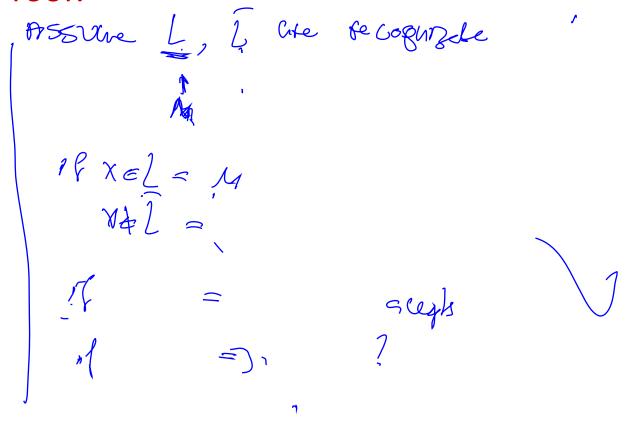
Classes of Languages: updated view

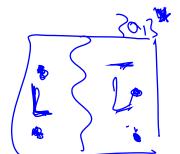


A specific unrecognizable Language

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Proof:





A specific unrecognizable Language

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Corollary: If L is Turing-recognizable and undecidable then \overline{L} is not Turing-recognizable.

A specific unrecognizable Language

Theorem: A language L is decidable if and only if L and \overline{L} are both Turing-recognizable.

Corollary: If L is Turing-recognizable and undecidable

then L is not Turing-recognizable.

Define:

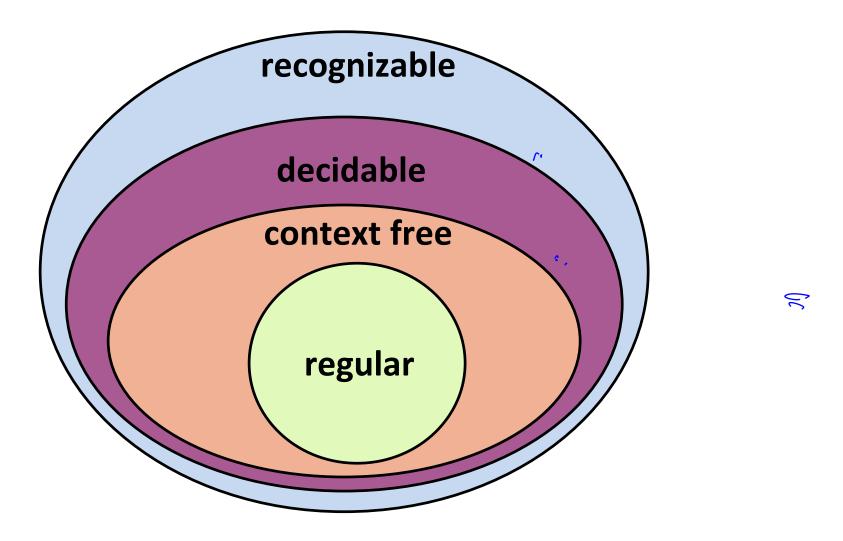
R = decidable languages

RE = Turing-recognizable languages

 $coRE = \{L \mid \overline{L} \text{ is Turing recognizable}\}$

GRE

Classes of Languages: updated view



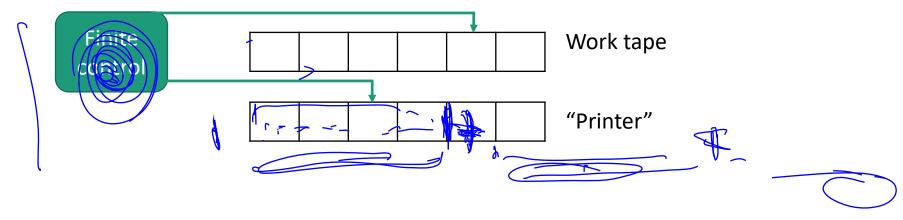
Enumerators

TMs are equivalent to...

- TMs with "stay put"
- TMs with 2-way infinite tapes
- Multi-tape TMs
- Nondeterministic TMs
- Random access TMs
- Enumerators

• • •

Enumerators



- Starts with two blank tapes
- Prints strings to printer
- $L(E) = \{ \text{strings eventually printed by } E \}$
- May never terminate (even if language is finite)
- May print the same string many times

Enumerator Example

- Initialize c = 1
- 2. Repeat forever:

 - Calculate $s = c^2$ (in binary) l(x) = l(x) + l(x) + l(x) = l(x) + l(x) = l(x) + l(x) + l(x) = l(x) + l(x) + l(x) + l(x) = l(x) + l(x) + l(x) + l(x) = l(x) + l
 - Send <u>s</u> to printer
 - Increment c

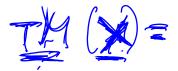
What language can an enumerator generate?

Mis ownedge

Enumerable = Turing-Recognizable

Theorem: A language is Turing-recognizable ⇔ some enumerator enumerates it

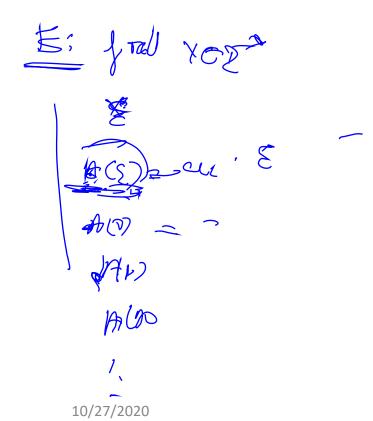
 \Leftarrow Start with an enumerator E for A and give a TM

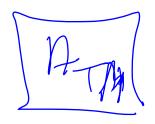


Enumerable = Turing-Recognizable

Theorem: A language is Turing-recognizable ⇔ some enumerator enumerates it

 \Rightarrow Start with a TM M for A and give an enumerator





Reductions

Scientists vs. Engineers

A computer scientist and an engineer are stranded on a desert island. They find two palm trees with one coconut on each. The engineer climbs a tree, picks a coconut and eats.

The computer scientist climbs the second tree, picks a coconut, climbs down, climbs up the first tree and places it there, declaring success.

"Now we've reduced the problem to one we've already solved."

Reductions

A reduction from problem A to problem B is an algorithm for problem A which uses an algorithm for problem B as a subroutine

If such a reduction exists, we say "A reduces to B"

Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A is also decidable

 $EQ_{\mathrm{DFA}} = \{\langle D_1, D_2 \rangle \mid D_1, D_2 \text{ are DFAs and } L(D_1) = L(D_2)\}$

Theorem: EQ_{DFA} is decidable

Proof: The following TM decides EQ_{DFA}

On input $\langle D_1, D_2 \rangle$, where $\langle D_1, D_2 \rangle$ are DFAs:

- 1. Construct a DFA D that recognizes the symmetric difference $L(D_1) \triangle L(D_2)$
- 2. Run the decider for E_{DFA} on $\langle D \rangle$ and return its output

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

```
A_{\text{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}
Suppose H decides A_{\text{TM}}
```

Consider the following TM D.

On input $\langle M \rangle$ where M is a TM:

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. If *H* accepts, accept. If *H* rejects, reject.

```
Claim: D decides SA_{TM} = \{\langle M \rangle \mid M \text{ is a TM that accepts on input } \langle M \rangle \}
```

Two uses of reductions

Negative uses: If A reduces to B and A is undecidable, then B is also undecidable

Proof template:

- 1. Suppose to the contrary that B is decidable
- 2. Using B as a subroutine, construct an algorithm deciding A
- 3. But A is undecidable. Contradiction!

Halting Problem

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM that halts on input } w\}$

Theorem: $HALT_{TM}$ is undecidable

Proof: Suppose for contradiction that there exists a decider H for $HALT_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

- 1. Run H on input $\langle M, w \rangle$
- 2. If *H* rejects, reject
- 3. If H accepts, simulate M on w
- 4. If *M* accepts, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $HALT_{\rm TM}$

Empty language testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $E_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

1. Run *R* on input ???

Empty language testing for TMs

$$E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: E_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $E_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

1. Construct a TM M' as follows:

```
2. Run R on input \langle M' \rangle
```

3. If *R* , accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $E_{\rm TM}$

Context-free language testing for TMs

 $CFL_{\mathrm{TM}} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is context } - \text{ free} \}$

Theorem: CFL_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $CFL_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

1. Construct a TM M' as follows:

- 2. Run R on input $\langle M' \rangle$
- 3. If R accepts, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $CFL_{\rm TM}$

Context-free language testing for TMs

 $CFL_{\mathrm{TM}} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is context } - \text{ free} \}$

Theorem: CFL_{TM} is undecidable

Proof: Suppose for contradiction that there exists a decider R for $CFL_{\rm TM}$. We construct a decider for $A_{\rm TM}$ as follows:

On input $\langle M, w \rangle$:

1. Construct a TM M' as follows:

M' ="On input x,

- 1. If $x \in \{0^n 1^n 2^n \mid n \ge 0\}$, accept
- 2. Run TM *M* on input *w*
- 3. If *M* accepts, accept."
- 2. Run R on input $\langle M' \rangle$
- 3. If R accepts, accept. Otherwise, reject

This is a reduction from $A_{\rm TM}$ to $CFL_{\rm TM}$