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A general theorem about set sizes

Theorem: Let X be a set. Then the power set P(X) does
not have the same size as X.

Proof: Assume for the sake of contradiction that there is a
correspondence f: X — P(X)

Construct aset S € P(X) that cannot be the output f(x)
forany x € X:

S={xeX|x &f(x)}
If S = f(y) forsome y € X,
theny € Sifandonlyify € S
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ran


Diagonalization argument

Assume a correspondence f: X = P(X)
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M X1 EF(X)? | X2 € f(X)?{ X3 € f(X)? | x4 € f(X)?} ..
I | e N Y | ¥
X7 N TN A Y Y
X3 Y Y T~ Y N
X4 Y N
Define S by flipping the diagonal:
Put x; €585 & x; € f(x;)



ran

ran


An Existential Proof

Theorem: There exists an unrecognlzable language over
{0,1}

Proof:

Set of all Turing machines: X C {ag)g,éz}*
Set of all languages over {0, 1} = all subsets of {0, 1}"
= P(X)

—?"

There are more languages than there are TMs!
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ran


Questions

* Are there languages that are recognizable but not
decidable?

® recognizable

context free

@
regular
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ran


Questions

* Are there languages that are recognizable but not
decidable?

* Are there any languages of interest that are
\ unrecognizable/undecidable?
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ran


A Specific Undecidable Language

\ATM = {{M,w) | M is a TM that accepts input w}
Theorem: Aty is undecidable

—

Proof: Assume for the sake Sf contradiction that TM H
decides Atp:

accept if M accepts w
reject  if M does notacceptw

!HI' ((M; ) W)) — {

\Diagonalization: Use H to check what M does when given
as input its own description...and do the opposite
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ran


A Specific Undecidable Language

Aty = {{M,w) | M is a TM that accepts input w}
Suppose H decides Aty

T T - B [ O 7f ey
Consider the following TM D. |

‘%
On inpu where M is a TM:

1. Run H oninput (1}4, (@}

2. If H accepts, reject. If H rejects, accept.

N 7&}7(24797

Question: What does D do on input KD)f?

’OW%H’S
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ran

ran


How is this diagonalization?
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ran


How is this diagonalization?

TMM [MEM)? | MEMz))? | M((M3))? | M((My))?

M, Y N Y. Y
M,— N N . Y Y
M3 Y Y Y" N
M, N N Y

D accepts input (M;) < M; does not accept input (M;)
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ran


How is this diagonalization?
T™M M | M((M1))? | M((Mp))? | M((M3))? | M((M))? | | D(D))?
M, Y N Y Y

M, N N Y Y

M3 Y Y Y N

M, N N Y N

D

D accepts input (M;) < M; does not accept input (M;)
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Classes of Languages: updated view

Ferall
( “(3*‘«;) :
recognizable ,

context free

$

regular
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ran

ran


A specific unrecognizable Language

Theorem: A language L is decidable if and onIy if L and L
are both Turing- recogmzable

_—

Proof:
T 7S\ e

—

Ute §o Coupcle

5
)
M

7¢ XCZ e
W) -

10/27/2020 CS332 - Theory of Computation 13


ran


A specific unrecognizable Language

Theorem: A language L is decidable if and only if L and L
are both Turing-recognizable.

Corollary: If L is Turing-recognizable and undecidable
then L is not Turing-recognizable.
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A specific unrecognizable Language

Theorem: A language L is decidable if and only if L and L
are both Turing-recognizable.

Corollary: If L is Turing-recognizable and undecidable
then L is not Turing-recognizable.

Define:

R = decidable languages

=

RE = Turing-recognizable languages

——

coRE = {L | L is Turing recognizable}

= = '
T, |
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ran

ran


Classes of Languages: updated view

recognizable

context free

regular
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ran


Enumerators
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\IMs are equivalent to...

 TMs with “stay put”

* TMs with 2-way infinite tapes
* Multi-tape TMs

* Nondeterministic TMs

# Random access TMs

* Enumerators
-—é‘_\'
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ran


Enumerators

Work tape

\ roo L] /;‘M “Printer” E
.V

D

 Starts with two blank tapes

* Prints strings to printer
g_} = {sirings eventually printed byf}

* May never terminate (even if language is finite)

* May print the same string many times
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ran


Enumerator Example

1. Initialize ¢ 1

— =

2. Repeat forever:

* Calculate s = i (in binary) LC‘E)C’ E b Zhgﬂg
* Send s to printer
* Increment ¢

\ What language can anenumerator generate?
_— s QMM[;@
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ran


Enumerable = Turing-Recognizable

Theorem: A language is Turing-recognizable & some
enumerator enumerates it

< Start with an enumerator E for A and give a TM

= =

P

TH ()=

S—

Iy .
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ran


Enumerable = Turing-Recognizable

Theorem: A language is Turing-recognizable < some
D e A
enumerator enumerates it —=

= Start with a TM M for 4 and give an enumerator

- —— ==
E g vop
¥
Qe ®
HYH =~ i
I
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ran

ran


|l

Reductions
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ran


Scientists vs. Engineers

A computer scientist and an engineer are stranded on a

desert island. They find two palm trees with one coconut
on each. The engineer climbs a tree, picks a coconut and
eats. i

Ji (|1 \ W

The computer scientist climbs the second tree, picks a
coconut, climbs down, climbs up the first tree and places
it there, declaring success.

“Now we’ve reduced the problem to one we’ve already
solved.”
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Reductions

A reduction from problem A to problem B is an algorithm

for problem A which uses an algorithm for problem B as a
subroutine

If such a reduction exists, we say “A reduces to B”
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Two uses of reductions

Positive uses: If A reduces to B and B is decidable, then A
is also decidable

EQDFA —_ {(Dl, Dz) |D1, D2 dare DFAS and L(Dl) — L(Dz)}
Theorem: EQpp, is decidable
Proof: The following TM decides EQpga

On input (D, D,), where (D4, D,) are DFAs:

1. Construct a DFA D that recognizes the symmetric
difference L(D;{) A L(D-)

2. Run the decider for Epga on (D) and return its output
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Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Aty = {(M,w) | M is a TM that accepts input w}
Suppose H decides Aty

Consider the following TM D.

On input (M) where M is a TM:

1. Run H on input (M, (M))

2. If H accepts, accept. If H rejects, reject.

Claim: D decides
SAty = {{M) | M is a TM that accepts on input (M)}

10/27/2020 CS332 - Theory of Computation

27




Two uses of reductions

Negative uses: If A reduces to B and A is undecidable,
then B is also undecidable

Proof template:
1. Suppose to the contrary that B is decidable

2. Using B as a subroutine, construct an algorithm
deciding A

3. But A is undecidable. Contradiction!
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Halting Problem

HALTyy = {{M,w) |M is a TM that halts on input w}
Theorem: HALTty is undecidable

Proof: Suppose for contradiction that there exists a decider H
for HALT+ty. We construct a decider for Aty as follows:

On input (M, w):

1. Run H on input (M, w)

2. If H rejects, reject

3. If H accepts, simulate M on w

4. If M accepts, accept. Otherwise, reject

This is a reduction from Aty to HALT 1y
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Empty language testing for TMs

Etpm = {{M)|MisaTM and L(M) = ¢}
Theorem: E1y is undecidable

Proof: Suppose for contradiction that there exists a decider R
for ETp. We construct a decider for Aty as follows:

On input (M, w):
1. Run R oninput ???

This is a reduction from Ay to Ety
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Empty language testing for TMs

Etpm = {{M)|MisaTM and L(M) = ¢}
Theorem: E1y is undecidable

Proof: Suppose for contradiction that there exists a decider R
for Ety. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM M’ as follows:

2. Run R on input (M")
3.IfR , accept. Otherwise, reject
This is a reduction from Aty to Evm
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Context-free language testing for TMs

CFLty = {{M) |M isaTM and L(M) is context — free}
Theorem: CF Lty is undecidable

Proof: Suppose for contradiction that there exists a decider R
for CFLty. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM M’ as follows:

2. Run R on input (M")
3. If R accepts, accept. Otherwise, reject
This is a reduction from Aty to CF Lty
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Context-free language testing for TMs

CFLty = {{M) |M isaTM and L(M) is context — free}
Theorem: CF Lty is undecidable

Proof: Suppose for contradiction that there exists a decider R
for CFLty. We construct a decider for Aty as follows:

On input (M, w):
1. Constructa TM M’ as follows:
M’ =“Oninput x,
1. If x € {0™"1"2" | n = 0}, accept
2. Run TM M on input w
3. If M accepts, accept.”
2. Run R on input (M")
3. If R accepts, accept. Otherwise, reject
This is a reduction from Aty to CF Lty
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