BU CS 332 — Theory of Computation

Lecture 14.
» Decidhble problems re DFAs, CFGs Reading:
* Unrecognizability Sipser Ch. 3.2, 4

* Undecidability

Ran Canetti
October 22, 2020

ran

Church-Turing Thesis v. I: The TM model captures our
intuitive notion of a computational algorithm.

10/22/2020 CS332 - Theory of Computation

Church-Turing Thesis v. I: The TM model captures our
intuitive notion of a computational algorithm.

\\ Church-Turing Thesis v. II: Any physical computation
process can be simulated on a TM.

10/22/2020 CS332 - Theory of Computation

ran

Church-Turing Thesis v. I: The TM model captures our
intuitive notion of a computational algorithm.

Church-Turing Thesis v. Il: Any physical computation
process can be simulated on a TM.

The Church-Turing Thesis is not a mathematical
statement!

10/22/2020 CS332 - Theory of Computation

Universal computation

A universal algorithm for a computational model is an
algorithm U that takes a description (4, x) of an algorithm

A and an input x in that model, and outputs A(x), i.e. the
result of running A on x. |

10/22/2020 CS332 - Theory of Computation 5

ran

Universal computation

A universal algorithm for a computational model is an
algorithm U that takes a description (4, x) of an algorithm
A and an input x in that model, and outputs A(x), i.e. the
result of running A on x.

We saw:
\ * Auniversal DFA: Uppa @ U((DFA,x)) = DFA(x)

.

10/22/2020 CS332 - Theory of Computation 6

ran

Universal computation

A universal algorithm for a computational model is an
algorithm U that takes a description (4, x) of an algorithm
A and an input x in that model, and outputs A(x), i.e. the
result of running A on x.

We saw:
e Auniversal DFA: Uppa: U(DFA,x)) = DFA(x)
* Auniversal CFG: Upga : U((CFG,Der)) = CFG(Der) W
(Der = Derivation tree)

ran

Universal computation

A universal algorithm for a computational model is an
algorithm U that takes a description (4, x) of an algorithm
A and an input x in that model, and outputs A(x), i.e. the
result of running A on x.

We saw:
e Auniversal DFA: Uppa: U(DFA,x)) = DFA(x)
* Auniversal CFG: Uppa: U((CFG,Der)) = CFG(Der)

(Der = Derivation tree)
* Auniversal TM: Uy : UM, x)) = M(x)

\

ran

Representation independence

\" Two representations of a computational task are
equivalent if there is an algorithmic way to translate
each representation to the other: |

= AT -
ex€Lo Tx)€EL
e BothT and T~! are computable.

=]

10/22/2020 CS332 - Theory of Computation

ran

Decidable languages
« Apra = {{D,w) |DFA D accepts w} is decidable

» Anra = {{IV, w) [INFA N accepts w} is decidable

= Ve
s Acrg = {{(G,w) |CFG G generates w} is decidable
~ =

10/22/2020 CS332 - Theory of Computation

10

ran

How about other questions?

\ Eppa = {(D) |D isa DFA, L(D) = ¢}

10/22/2020 CS332 - Theory of Computation

11

ran

How about other questions?

Eppa = D) |Disa DFA, L(D) = @} ©epl Ll

Enga = {(D) D is an NFA, L(D) = @} peeidel |

10/22/2020 CS332 - Theory of Computation

12

ran

How about other questions?
Epga = {(D) ID is a DFA, L(D) = @}
ENFA — {(D) |D 1S an NFA, L(D) — @}

,EQDFA = {(D‘pl_)lg) |D1;l?z DFAs, L(D,) = L(D;)} \7

(2,
N —J

10/22/2020 CS332 - Theory of Computation

13

ran

How about other questions?

Eppa = {(D) |D isa DFA, L(D) = ¢}
ENFA — {(D) |D IS an NFA, L(D) — @}
EQppp = {(D1,D,) |D{,D, DFAs, L(D{) = L(D,)}

Ecpg = {(G) |Gis a CFG, L(G) =0} \J

10/22/2020 CS332 - Theory of Computation

14

ran

How about other questions?

Eppa = {(D) |D isa DFA, L(D) = ¢}
ENFA — {(D) |D IS an NFA, L(D) = @}
EQpra = {{D1, D) |D1, D, DFAs, L(D;) = L(Dz)}

\Ecre = (@) |Gis a CFG, L(G) = @} oecidtl
N Loy > € VWL fdepagling }uy:&wﬁ) ML
NEQCFG — {<Gly GZ) |Gl) GZ CFGS) L(Gl) # L(GZ)} &{‘@SA&Q
Y

10/22/2020 @ CS332 - Theory of Computation \6@5

ran

ran

ran

How about questions on TMs?

;‘}TM = {(M,x) |TM M accepts x} Yeou ol
”(ﬁc’d_/a\éﬁﬂ

10/22/2020 CS332 - Theory of Computation 16

ran

ran

ran

How about questions on TMs?

Ay = (M, x) |[TM M accepts x} g, M?

S

CEmu={M) MisaT™, LOD =0} 3 %

10/22/2020 CS332 - Theory of Computation

ran

Summary

10/22/2020

E DFA E CFG E T™
decidable decidable ?
EQprpn EQcgg EQy
decidable ? ?

—_— — ,
=

CS332 - Theory of Computation 18

ran

Undecidability

These natural computational questions about
computational models are undecidable

l.e., computers cannot solve these problems no matter
how much time they are given

ran

Countability ana
Diagonalizaiton

10/22/2020 (CS332 -Theory o f Computation

ran

\Set Theory Review

A function @A — B is

e 1-to-1 (injective) if fr(q) 7
f(a')foralla # a'
. s ~ R

* onto (surjective) if for all b € B,
j there exists a € A such that

fla) =D

* a correspondence (bijective) if
itis 1-to-1 and onto, l.e., every
b € B has a unique a € A with

fla) =D

10/22/2020 CS332 - Theory of Computation

21

ran

How can we compare sizes of infinite sets?

Definition: Two sets have the same size if thereis a
bijection between them

N

A set is countable if

e itis a finite set, or
-~ ——

* it has the same size as g, the set of natural numbers

Y

10/22/2020 CS332 - Theory of Computation 22

ran

Examples of countable sets
*Q

—_—

- {0,1}
. {0,1,2, ...8675309)

-E = {2,4,6,8,..)
- SQUARES = {1,4,9,16,25, ...}
- POW2 ={1,2,4,8,16,32, ...}

|E| = |SQUARES| = |POW?2| = |N]

- —

10/22/2020 CS332 - Theory of Computation

23

ran

How to show that N X N is cou_)ntable?

(1,,

"\/)

(1)4)

(1,8

10/22/2020

(2,4

(2,5)

(3

(3,3

(3,4)

(3,5)

(4,2)

(4,3)

(4,4)

(4,5)

CS332 - Theory of Computation

>
(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

24

ran

More examples of countable sets

101}

o¢ {{M) | M is a Turing machine}
* Q = {rational numbers} %

\SO what isn’t countable?
R ,

10/22/2020 CS332 - Theory of Computation

25

ran

Cantor’s Diagonalization Method

* Invented set theory
* Defined countability, uncountability,
cardinal and ordinal numbers, ...

Some praise for his work:

\ “Scientific charlatan...renegade...corruptor of youth”
—L. Kronecker

Georg Cantor 1845-1918 “Set theory is wrong...utter nonsense...laughable”

\ —L. Wittgenstein
Sylvester Medal, Royal Society, 1904

10/22/2020 CS332 - Theory of Computation 26

ran

Uncountability of the reals

countable, and let f: N — (

- -
n fm ‘
@ 0(di)dzdsdyds .. [
Q) 0.d? @l_édﬁ dz ... S
3 0.d3 d%@iz d3 ..
A 0.d*d? d? dtd? ..
s O.d{’d%d?dié\\.
Construct b € (0,1) which does not appear in this table
— contradiction!
b =0. dilrdzgd&.. where d; # digit i of f (i) \

10/22/2020 CS332 - Theory of Computation \\27

ran

ran

Uncountability of the reals

A concrete example:

f(n)
8675309..
415926...

o b W N | S

0.133713

Construct b € (0,1) which does not appear in this table

— contradiction!
b =0.d,d,d;... where d; # digit i of f (i)

10/22/2020 CS332 - Theory of Computation 28

ran

ran

(P\iagonalization7

This process of constructing a counterexample by

“contradicting the diagona

10/22/2020

III M

is called diagonalization

CS332 - Theory of Computation 29

ran

What if we try to do this with the rationals?

What happens if we try to use this argument to show that
Q n (0,1) [rational numbers in (0,1)] is uncountable?

Let f: SI\i - (Q}Q (0,1) be a correspondence
n ‘ f(n)
1 N

b =0.d,d,d;... where d; # digit i of f (i)

10/22/2020 CS332 - Theory of Computation 30

ran

A general theorem about set sizes

a._ _
Theorem: Let X be a set. Then the power set P(X) does
not have the same size as X.

Proof: Assume for the sake of contradiction that there is a
correspondence f: X — P(X)

Goal: Construct asetS € P(X) that cannot be the output
f(x)foranyx € X

10/22/2020 CS332 - Theory of Computation 31

ran

Diagonalization argument

Assume a correspondence f: X = P(X)

< e

X1 _ xi

Xo A \

10/22/2020 CS332 - Theory of Computation

32

ran

Diagonalization argument

Assume a correspondence f: X = P(X)

X~ X1 EF(X)? | x2 € f(X)? | x3 € f(x)? | x4 Ef(X)?|
A N Y Y
‘,' X2 N N Y Y
X3 Y Yl Y N
' Xy N N Y N

Define S by flipping the diagonal:

Put

10/22/2020

X €S & x & f(x;)

CS332 - Theory of Computation

33

ran

Example
Let X = {1,2,3}, P(X) = {0, {1},{2},{1,2},{2,3},{1,2,3}}
Ex. f(1) ={1,2}, f(2) =0, f(3) ={2}

1€ f(x)? |2 € fF(x)? |3 € f(x)?

X
1
2
3

Construct S =

10/22/2020 CS332 - Theory of Computation 34

A general theorem about set sizes

Theorem: Let X be a set. Then the power set P(X) does
not have the same size as X.

Proof: Assume for the sake of contradiction that there is a
correspondence f: X — P(X)

Construct aset S € P(X) that cannot be the output f(x)
forany x € X:

S={xeX|x &f(x)}
If S = f(y) forsome y € X,
theny € Sifandonlyify € S

10/22/2020 CS332 - Theory of Computation 35

&@UL]’C\Z,(/ l@i’%

\ o

Undecidable Languages

10/22/2020 (CS332 - Theory of Computation

ran

| W] =%

LLO~0 =) poagrt]= 7
Theorem: There exists an undecidable language over {0, 1}

—

An Existential Proof

Proof:

A simplifying assumption: Every string in {0, 1}" is the
encoding (M) of some Turing machine M

Set of all Turing machines: X = {0, 1}
Set of all languages over {0, 1} = all subsets of {0, 1}"

- P()

There are more languages than there are TM deciders!

ran

An Existential Proof

Theorem: There exists an unrecognizable language over {0, 1}

—

Proof:

A simplifying assumption: Every string in {0, 1}" is the
encoding (M) of some Turing machine M

Set of all Turing machines: X = {0,1}"

Set of all languages over {0, 1} = all subsets of {0, 1}"
= P(X)

There are more languages than there are TM recognizers!

10/22/2020 CS332 - Theory of Computation 38

ran

A Specific Undecidable Language

Aty = {{M,w) | M is a TM that accepts input w}
Theorem: Aty is undecidable

Proof: Assume for the sake of contradiction that TM H
decides Atp:

accept if M accepts w
reject if M does notacceptw

H({M,w)) = {

Diagonalization: Use H to check what M when given as
input its own description...and do the opposite

10/22/2020 CS332 - Theory of Computation 39

A Specific Undecidable Language

Aty = {{M,w) | M is a TM that accepts input w}
Suppose H decides Aty

Consider the following TM D.
On input (M) where M is a TM:

1. Run H on input (M, (M))
2. If H accepts, reject. If H rejects, accept.

Question: What does D do on input (D)?

10/22/2020 CS332 - Theory of Computation 40

How is this diagonalization?

10/22/2020 CS332 - Theory of Computation

How is this diagonalization?

TMM |M((M1))? | M((M2))? | M((M3))? | M((M4))?

M, Y N Y Y
M, N N Y Y
M; Y Y Y N
M, N N Y N

D accepts input (M;) < M; does not accept input (M;)

10/22/2020 CS332 - Theory of Computation 42

How is this diagonalization?
T™M M | M((M1))? | M((Mp))? | M((M3))? | M((M))? | | D(D))?
M, Y N Y Y

M, N N Y Y

M3 Y Y Y N

M, N N Y N

D

D accepts input (M;) < M; does not accept input (M;)

10/22/2020 CS332 - Theory of Computation 43

10/22/2020

CS332 - Theory of Computation

44

Aty = {{M,w) | M is a TM that accepts input w}

On input (M, w):
1. Simulate running M on input w

2. If M accepts, accept. If M rejects, reject.

10/22/2020 CS332 - Theory of Computation

45

