BU CS 332 – Theory of Computation

Lecture 14:

- Decidable problems re DFAs, CFGs
- Unrecognizability
- Undecidability

Ran Canetti

October 22, 2020

Sipser Ch. 3.2, 4

Reading:

Church-Turing *Thesis v. I*: The TM model captures our intuitive notion of a computational algorithm.

Church-Turing *Thesis v. I*: The TM model captures our intuitive notion of a computational algorithm.

Church-Turing *Thesis v. II*: Any physical computation process can be simulated on a TM.

Church-Turing *Thesis v. I*: The TM model captures our intuitive notion of a computational algorithm.

Church-Turing *Thesis v. II*: Any physical computation process can be simulated on a TM.

The Church-Turing Thesis is **not** a mathematical statement!

A universal algorithm for a computational model is an algorithm U that takes a description $\langle A, x \rangle$ of an algorithm A and an input x in that model, and outputs A(x), i.e. the result of running A on x.

A universal algorithm for a computational model is an algorithm U that takes a description $\langle A, x \rangle$ of an algorithm A and an input x in that model, and outputs A(x), i.e. the result of running A on x.

We saw:

• A universal DFA: $U_{DFA}: U(\langle DFA, x \rangle) = DFA(x)$

A universal algorithm for a computational model is an algorithm U that takes a description $\langle A, x \rangle$ of an algorithm A and an input x in that model, and outputs A(x), i.e. the result of running A on x.

We saw:

- A universal DFA: U_{DFA} : $U(\langle DFA, x \rangle) = DFA(x)$
- A universal CFG: $U_{DFA}: U(\langle CFG, Der \rangle) = CFG(Der)^{(n)}$ (Der = Derivation tree)

A universal algorithm for a computational model is an algorithm U that takes a description $\langle A, x \rangle$ of an algorithm A and an input x in that model, and outputs A(x), i.e. the result of running A on x.

We saw:

- A universal DFA: U_{DFA} : $U(\langle DFA, x \rangle) = DFA(x)$
- A universal CFG: U_{DFA} : $U(\langle CFG, Der \rangle) = CFG(Der)$

(Der = Derivation tree)

• A universal TM:

$$U_{\text{TM}}: U(\langle M, x \rangle) = M(x)$$

Representation independence

 Two representations of a computational task are equivalent if there is an algorithmic way to translate each representation to the other:

• $x \in L \leftrightarrow T(x) \in L'$ • Both T and T^{-1} are computable.

Decidable languages

 $A_{DFA} = \{\langle D, w \rangle | DFA D accepts w\}$ is decidable

• $A_{\text{NFA}} = \{\langle N, w \rangle | \text{NFA } N \text{ accepts } w \}$ is decidable

• $A_{CFG} = \{\langle G, w \rangle | CFG G \text{ generates } w \}$ is decidable

$E_{\text{DFA}} = \{ \langle D \rangle | D \text{ is a DFA, } L(D) = \emptyset \}$

 $E_{\text{DFA}} = \{ \langle D \rangle | D \text{ is a DFA, } L(D) = \emptyset \}$ Decodable

$$E_{\text{NFA}} = \{ \langle D \rangle \mid D \text{ is an NFA, } L(D) = \emptyset \}$$
 be called

$$E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA, } L(D) = \emptyset \}$$

 $E_{\text{NFA}} = \{ \langle D \rangle | D \text{ is an NFA, } L(D) = \emptyset \}$

$EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle | D_1, D_2 \text{ DFAs, } L(D_1) = L(D_2) \}$

$$E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA, } L(D) = \emptyset \}$$

$$E_{\text{NFA}} = \{ \langle D \rangle \mid D \text{ is an NFA, } L(D) = \emptyset \}$$

$EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle | D_1, D_2 \ DFAs, \ L(D_1) = L(D_2) \}$

$$E_{\underline{CFG}} = \{\langle G \rangle | G \text{ is a } CFG, \ L(G) = \emptyset\} \qquad \bigvee$$

$$E_{\text{DFA}} = \{ \langle D \rangle | D \text{ is a DFA, } L(D) = \emptyset \}$$

$$E_{\text{NFA}} = \{ \langle D \rangle | D \text{ is an NFA, } L(D) = \emptyset \}$$

$$EQ_{\text{DFA}} = \{ \langle D_1, D_2 \rangle | D_1, D_2 \text{ DFAs, } L(D_1) = L(D_2) \}$$

$$E_{\text{CFG}} = \{ \langle G \rangle | G \text{ is a CFG, } L(G) = \emptyset \} \quad \text{Deschable}$$

$$L(G) \geq \emptyset \quad \text{Med events have be reways on where Classified in reways on where Classified in reways of the elements of the complete of$$

dechell?

10/22/2020

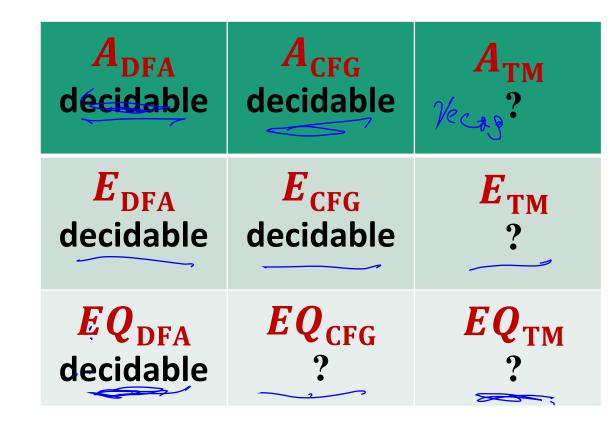
CS332 - Theory of Computation

How about questions on TMs?

 $A_{\rm TM} = \{ \langle M, x \rangle | TM \ M \ accepts \ x \} \ \text{reog} \ \text{makh} \\ de i \ d$

How about questions on TMs? $A_{TM} = \{\langle M, x \rangle | TM \ M \ accepts \ x\}$ From dec? $E_{TM} = \{\langle M \rangle | M \ is \ a \ TM, \ L(M) \stackrel{!}{=} \emptyset\}$?

Summary



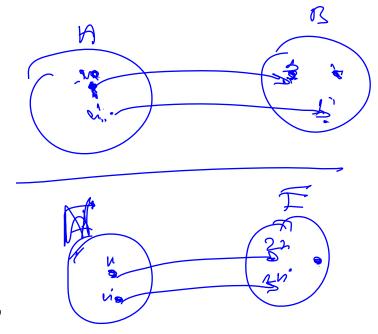
These natural computational questions about computational models are **undecidable**

I.e., computers cannot solve these problems no matter how much time they are given

Countability and Diagonalizaiton

Set Theory Review

- A function $f: A \to B$ is
- 1-to-1 (injective) if $f(a) \neq f(a')$ for all $a \neq a'$
- onto (surjective) if for all $b \in B$, there exists $a \in A$ such that f(a) = b
- a correspondence (bijective) if it is 1-to-1 and onto, i.e., every b ∈ B has a unique a ∈ A with f(a) = b

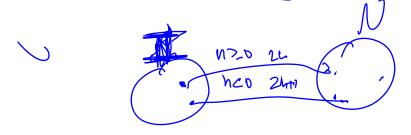


How can we compare sizes of infinite sets?

Definition: Two sets have the same size if there is a bijection between them

A set is countable if

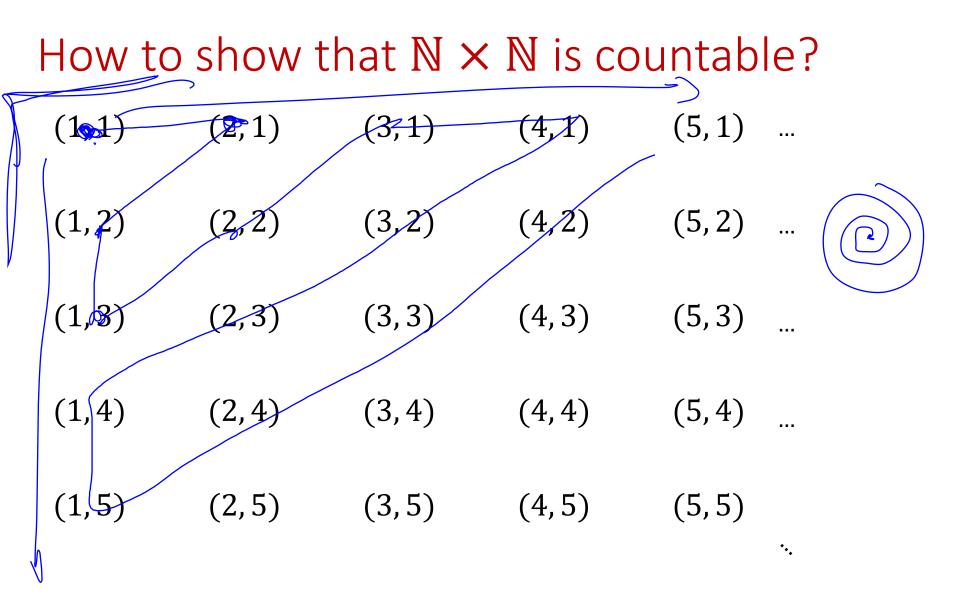
- it is a finite set, or
- it has the same size as \mathbb{N} , the set of natural numbers



Examples of countable sets

- •Ø
- {0,1}
- {0, 1, 2, ... 8675309}
- $E = \{2, 4, 6, 8, ...\}$
- $SQUARES = \{1, 4, 9, 16, 25, ...\}$
- $POW2 = \{1, 2, 4, 8, 16, 32, ...\}$

$|E| = |SQUARES| = |POW2| = |\mathbb{N}|$

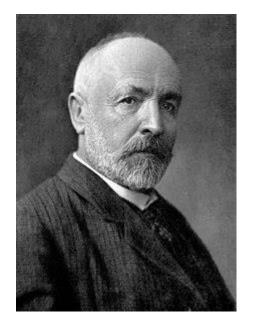


More examples of countable sets

- {0,1} *
- • { $\langle M \rangle$ | *M* is a Turing machine}
 - $\mathbb{Q} = \{ rational numbers \}$

So what *isn't* countable?

Cantor's Diagonalization Method



- Invented set theory
- Defined countability, uncountability, cardinal and ordinal numbers, ...

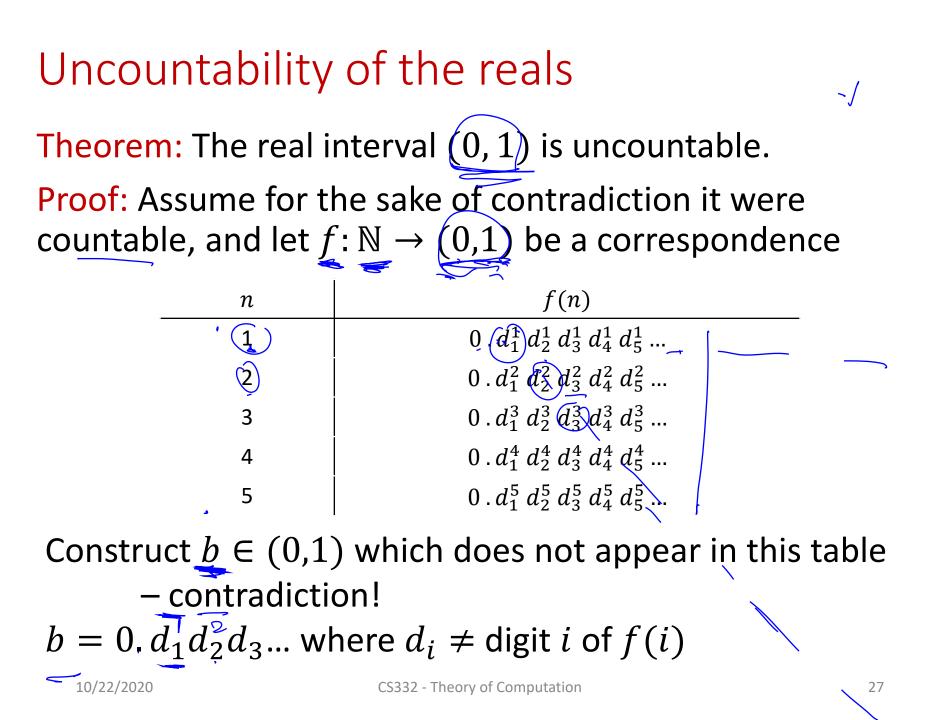
Some praise for his work:

"Scientific charlatan...renegade...corruptor of youth" –L. Kronecker

Georg Cantor 1845-1918

"Set theory is wrong...utter nonsense...laughable" —L. Wittgenstein

Sylvester Medal, Royal Society, 1904



A concrete example:

n	f(n)			
1	0.8675309			
2	0.1415926			
3	0.7182818			
4	0.444444			
5	0.1337133			

Construct $b \in (0,1)$ which does not appear in this table - contradiction!

$$b = 0.d_1d_2d_3...$$
 where $d_i \neq \text{digit } i \text{ of } f(i)$

This process of constructing a counterexample by "contradicting the diagonal" is called diagonalization

What if we try to do this with the rationals?

What happens if we try to use this argument to show that $\mathbb{Q} \cap (0,1)$ [rational numbers in (0,1)] is uncountable?

Let $f: \mathbb{N} \to \mathbb{Q} \cap (0,1)$ be a correspondence f(n)n 8678678..._ 1_ 414141... 2 0.7182718... 3 0.444444... 4 0.1337135 Construct $b \in (0,1)$ which does not appear in this table $b = 0. d_1 d_2 d_3 \dots$ where $d_i \neq \text{digit } i \text{ of } f(i)$

10/22/2020

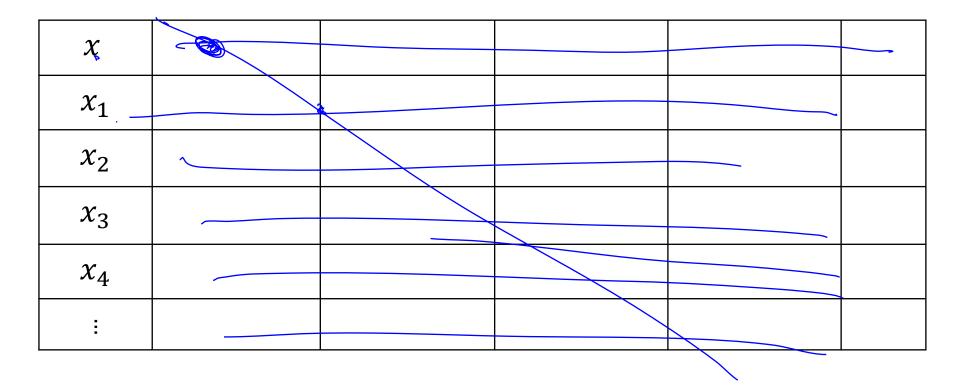
A general theorem about set sizes Theorem: Let X be a set. Then the power set P(X) does not have the same size as X.

Proof: Assume for the sake of contradiction that there is a correspondence $f: X \rightarrow P(X)$

<u>Goal</u>: Construct a set $S \in P(X)$ that cannot be the output f(x) for any $x \in X$

Diagonalization argument

Assume a correspondence $f: X \to P(X)$



Diagonalization argument

Assume a correspondence $f: X \to P(X)$

x	$x_1 \in f(x)$?	$x_2 \in f(x)$?	$x_3 \in f(x)$?	$\underline{x_4} \in f(\underline{x})?$	
x_1	Y X	N	Y	Y	
<i>x</i> ₂	N	N	Y	Y	
x_3	Y	Y	Ŷ	Ν	
x_4	N	Ν	Y	N	
					•••

Define S by flipping the diagonal: Put $x_i \in S \iff x_i \notin f(x_i)$

Example

Let $X = \{1, 2, 3\}, P(X) = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$ Ex. $f(1) = \{1, 2\}, f(2) = \emptyset, f(3) = \{2\}$

x	$1 \in f(x)?$	$2 \in f(x)$?	$3 \in f(x)$?	
1				
2				
3				
:				*•.

Construct S =

A general theorem about set sizes

Theorem: Let X be a set. Then the power set P(X) does **not** have the same size as X.

Proof: Assume for the sake of contradiction that there is a correspondence $f: X \rightarrow P(X)$

Construct a set $S \in P(X)$ that cannot be the output f(x) for any $x \in X$:

$$S = \{x \in X \mid x \notin f(x)\}$$

If S = f(y) for some $y \in X$,

then $y \in S$ if and only if $y \notin S$

countrale bas

Undecidable Languages

An Existential Proof

 $| [n] = \chi_{0}$ $| 2(2-15) = | p(2+15) = \chi_{0}$ Theorem: There exists an undecidable language over $\{0, 1\}$ **Proof**:

A simplifying assumption: Every string in $\{0, 1\}^*$ is the encoding $\langle M \rangle$ of some Turing machine M

Set of all Turing machines: $X = \{0, 1\}^*$ Set of all languages over $\{0, 1\}$ = all subsets of $\{0, 1\}^*$ = P(X

There are more languages than there are TM deciders!

An Existential Proof

Theorem: There exists an unrecognizable language over {0, 1} Proof:

A simplifying assumption: Every string in $\{0, 1\}^*$ is the encoding $\langle M \rangle$ of some Turing machine M

Set of all Turing machines: $X = \{0, 1\}^*$ Set of all languages over $\{0, 1\} =$ all subsets of $\{0, 1\}^*$ = P(X)

There are more languages than there are TM recognizers!

A Specific Undecidable Language

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$ Theorem: A_{TM} is undecidable

Proof: Assume for the sake of contradiction that TM *H* decides A_{TM} :

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

Diagonalization: Use *H* to check what *M* when given as input its own description...and do the opposite

A Specific Undecidable Language

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$ Suppose *H* decides A_{TM}

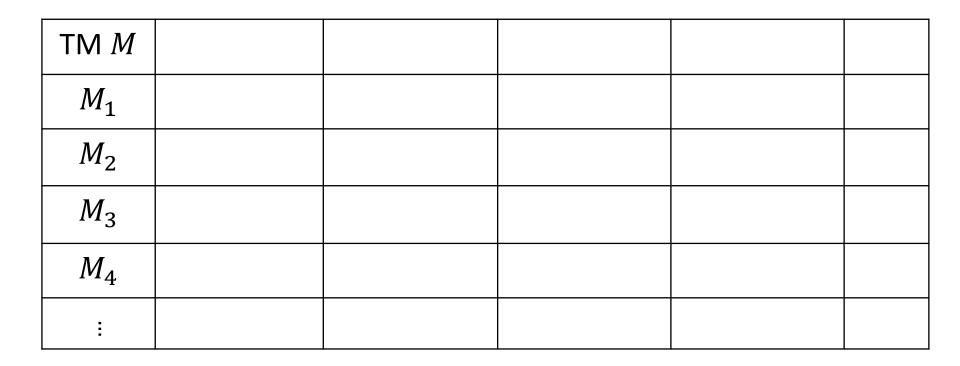
Consider the following TM D.

On input $\langle M \rangle$ where M is a TM:

- 1. Run *H* on input $\langle M, \langle M \rangle \rangle$
- 2. If *H* accepts, reject. If *H* rejects, accept.

Question: What does D do on input $\langle D \rangle$?

How is this diagonalization?



How is this diagonalization?

TM M	$M(\langle M_1 \rangle)?$	$M(\langle M_2 \rangle)?$	$M(\langle M_3 \rangle)?$	$M(\langle M_4 \rangle)?$	
<i>M</i> ₁	Y	N	Y	Y	
<i>M</i> ₂	N	N	Y	Y	
<i>M</i> ₃	Y	Y	Y	N	
<i>M</i> ₄	N	N	Y	N	
:					*••

D accepts input $\langle M_i \rangle \iff M_i$ does not accept input $\langle M_i \rangle$

How is this diagonalization?

TM M	$M(\langle M_1 \rangle)?$	$M(\langle M_2 \rangle)?$	$M(\langle M_3 \rangle)?$	$M(\langle M_4 \rangle)?$		$D(\langle D \rangle)?$
<i>M</i> ₁	Y	N	Y	Y		
<i>M</i> ₂	N	Ν	Y	Y		
<i>M</i> ₃	Y	Y	Y	Ν		
<i>M</i> ₄	N	N	Y	N		
:					**•	
D						

D accepts input $\langle M_i \rangle \iff M_i$ does not accept input $\langle M_i \rangle$

 $A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \}$

On input $\langle M, w \rangle$:

- 1. Simulate running *M* on input *w*
- 2. If *M* accepts, accept. If *M* rejects, reject.