BU CS 332 — Theory of Computation

Lecture 14.
» Decidhble problems re DFAs, CFGs  Reading:
* Unrecognizability Sipser Ch. 3.2, 4

* Undecidability

Ran Canetti
October 22, 2020


ran


Church-Turing Thesis v. I: The TM model captures our
intuitive notion of a computational algorithm.
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Church-Turing Thesis v. I: The TM model captures our
intuitive notion of a computational algorithm.

\\ Church-Turing Thesis v. II: Any physical computation
process can be simulated on a TM.
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Church-Turing Thesis v. I: The TM model captures our
intuitive notion of a computational algorithm.

Church-Turing Thesis v. Il: Any physical computation
process can be simulated on a TM.

The Church-Turing Thesis is not a mathematical
statement!
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Universal computation

A universal algorithm for a computational model is an
algorithm U that takes a description (4, x) of an algorithm

A and an input x in that model, and outputs A(x), i.e. the
result of running A on x. |
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Universal computation

A universal algorithm for a computational model is an
algorithm U that takes a description (4, x) of an algorithm
A and an input x in that model, and outputs A(x), i.e. the
result of running A on x.

We saw:
\ * Auniversal DFA:  Uppa @ U((DFA,x)) = DFA(x)

.
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Universal computation

A universal algorithm for a computational model is an
algorithm U that takes a description (4, x) of an algorithm
A and an input x in that model, and outputs A(x), i.e. the
result of running A on x.

We saw:
e Auniversal DFA: Uppa: U(DFA,x)) = DFA(x)
* Auniversal CFG:  Upga : U((CFG,Der)) = CFG(Der) W
(Der = Derivation tree)
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Universal computation

A universal algorithm for a computational model is an
algorithm U that takes a description (4, x) of an algorithm
A and an input x in that model, and outputs A(x), i.e. the
result of running A on x.

We saw:
e Auniversal DFA: Uppa: U(DFA,x)) = DFA(x)
* Auniversal CFG: Uppa: U((CFG,Der)) = CFG(Der)

(Der = Derivation tree)
* Auniversal TM: Uy : UM, x)) = M(x)

\


ran


Representation independence

\" Two representations of a computational task are
equivalent if there is an algorithmic way to translate
each representation to the other: |

= AT -
ex€Lo Tx)€EL
e BothT and T~! are computable.

= ]
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Decidable languages
« Apra = {{D,w) |DFA D accepts w} is decidable

» Anra = {{IV, w) [INFA N accepts w} is decidable

= Ve
s Acrg = {{(G,w) |CFG G generates w} is decidable
~ =
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How about other questions?

\ Eppa = {(D) |D isa DFA, L(D) = ¢}
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How about other questions?

Eppa = D) |Disa DFA, L(D) = @}  ©epl Ll

Enga = {(D) D is an NFA, L(D) = @} peeidel |
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How about other questions?
Epga = {(D) ID is a DFA, L(D) = @}
ENFA — {(D) |D 1S an NFA, L(D) — @}

,EQDFA = {(D‘pl_)lg) |D1;l?z DFAs, L(D,) = L(D;)} \7

(2,
N —J
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How about other questions?

Eppa = {(D) |D isa DFA, L(D) = ¢}
ENFA — {(D) |D IS an NFA, L(D) — @}
EQppp = {(D1,D,) |D{,D, DFAs, L(D{) = L(D,)}

Ecpg = {(G) |Gis a CFG, L(G) =0}  \J
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How about other questions?

Eppa = {(D) |D isa DFA, L(D) = ¢}
ENFA — {(D) |D IS an NFA, L(D) = @}
EQpra = {{D1, D) |D1, D, DFAs, L(D;) = L(Dz)}

\Ecre = (@) |Gis a CFG, L(G) = @} oecidtl
N Loy > € VWL fdepagling }uy:&wﬁ ) ML
NEQCFG — {<Gly GZ) |Gl) GZ CFGS) L(Gl) # L(GZ)} &{‘@SA&Q
Y
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ran

ran


How about questions on TMs?

;‘}TM = {(M,x) |TM M accepts x} Yeou ol
”(ﬁc’d_/a\éﬁﬂ
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ran

ran


How about questions on TMs?

Ay = (M, x) |[TM M accepts x} g, M?

S

CEmu={M) MisaT™, LOD =0} 3 %
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Summary

10/22/2020

E DFA E CFG E T™
decidable decidable ?
EQprpn  EQcgg EQy
decidable ? ?

—_— — ,
=
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Undecidability

These natural computational questions about
computational models are undecidable

l.e., computers cannot solve these problems no matter
how much time they are given


ran


Countability ana
Diagonalizaiton
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\Set Theory Review

A function @A — B is

e 1-to-1 (injective) if fr(q) 7
f(a')foralla # a'
. s ~ R

* onto (surjective) if for all b € B,
j there exists a € A such that

fla) =D

* a correspondence (bijective) if
itis 1-to-1 and onto, l.e., every
b € B has a unique a € A with

fla) =D
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How can we compare sizes of infinite sets?

Definition: Two sets have the same size if thereis a
bijection between them

N

A set is countable if

e itis a finite set, or
-~ ——

* it has the same size as g, the set of natural numbers

Y
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Examples of countable sets
*Q

—_—

- {0,1}
. {0,1,2, ...8675309)

-E = {2,4,6,8,..)
- SQUARES = {1,4,9,16,25, ...}
- POW2 ={1,2,4,8,16,32, ...}

|E| = |SQUARES| = |POW?2| = |N]

- —
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How to show that N X N is cou_)ntable?

(1,,

"\/)

(1)4)

(1,8

10/22/2020

(2,4

(2,5)

(3

(3,3

(3,4)

(3,5)

(4,2)

(4,3)

(4,4)

(4,5)
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(5,1)

(5,2)

(5,3)

(5,4)

(5,5)
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ran


More examples of countable sets

101}

o¢ {{M) | M is a Turing machine}
* Q = {rational numbers} %

\SO what isn’t countable?
R ,
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Cantor’s Diagonalization Method

* Invented set theory
* Defined countability, uncountability,
cardinal and ordinal numbers, ...

Some praise for his work:

\ “Scientific charlatan...renegade...corruptor of youth”
—L. Kronecker

Georg Cantor 1845-1918 “Set theory is wrong...utter nonsense...laughable”

\ —L. Wittgenstein
Sylvester Medal, Royal Society, 1904

10/22/2020 CS332 - Theory of Computation 26


ran


Uncountability of the reals

countable, and let f: N — (

- -
n fm ‘
@ 0(di)dzdsdyds .. [
Q) 0.d? @l_édﬁ dz ... S
3 0.d3 d%@iz d3 ..
A 0.d*d? d? dtd? ..
s O.d{’d%d?dié\\.
Construct b € (0,1) which does not appear in this table
— contradiction!
b =0. dilrdzgd&.. where d; # digit i of f (i) \
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ran


Uncountability of the reals

A concrete example:

f(n)
8675309..
415926...

o b W N | S

0.133713

Construct b € (0,1) which does not appear in this table

— contradiction!
b =0.d,d,d;... where d; # digit i of f (i)
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(P\iagonalization7

This process of constructing a counterexample by

“contradicting the diagona

10/22/2020

III M

is called diagonalization
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What if we try to do this with the rationals?

What happens if we try to use this argument to show that
Q n (0,1) [rational numbers in (0,1)] is uncountable?

Let f: SI\i - (Q}Q (0,1) be a correspondence
n ‘ f(n)
1 N

b =0.d,d,d;... where d; # digit i of f (i)
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A general theorem about set sizes

a._ _
Theorem: Let X be a set. Then the power set P(X) does
not have the same size as X.

Proof: Assume for the sake of contradiction that there is a
correspondence f: X — P(X)

Goal: Construct asetS € P(X) that cannot be the output
f(x)foranyx € X
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ran


Diagonalization argument

Assume a correspondence f: X = P(X)

< e

X1 _ xi

Xo A \
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ran


Diagonalization argument

Assume a correspondence f: X = P(X)

X~ X1 EF(X)? | x2 € f(X)? | x3 € f(x)? | x4 Ef(X)?|
A N Y Y
‘,' X2 N N Y Y
X3 Y Yl Y N
' Xy N N Y N

Define S by flipping the diagonal:

Put

10/22/2020

X €S & x & f(x;)
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Example
Let X = {1,2,3}, P(X) = {0, {1},{2},{1,2},{2,3},{1,2,3}}
Ex. f(1) ={1,2}, f(2) =0, f(3) ={2}

1€ f(x)? |2 € fF(x)? |3 € f(x)?

X
1
2
3

Construct S =
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A general theorem about set sizes

Theorem: Let X be a set. Then the power set P(X) does
not have the same size as X.

Proof: Assume for the sake of contradiction that there is a
correspondence f: X — P(X)

Construct aset S € P(X) that cannot be the output f(x)
forany x € X:

S={xeX|x &f(x)}
If S = f(y) forsome y € X,
theny € Sifandonlyify € S
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Undecidable Languages
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ran


| W] =%

LLO~0 = ) poagrt]= 7
Theorem: There exists an undecidable language over {0, 1}

—

An Existential Proof

Proof:

A simplifying assumption: Every string in {0, 1}" is the
encoding (M) of some Turing machine M

Set of all Turing machines: X = {0, 1}
Set of all languages over {0, 1} = all subsets of {0, 1}"

- P()

There are more languages than there are TM deciders!


ran


An Existential Proof

Theorem: There exists an unrecognizable language over {0, 1}

—

Proof:

A simplifying assumption: Every string in {0, 1}" is the
encoding (M) of some Turing machine M

Set of all Turing machines: X = {0,1}"

Set of all languages over {0, 1} = all subsets of {0, 1}"
= P(X)

There are more languages than there are TM recognizers!
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A Specific Undecidable Language

Aty = {{M,w) | M is a TM that accepts input w}
Theorem: Aty is undecidable

Proof: Assume for the sake of contradiction that TM H
decides Atp:

accept if M accepts w
reject  if M does notacceptw

H({M,w)) = {

Diagonalization: Use H to check what M when given as
input its own description...and do the opposite
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A Specific Undecidable Language

Aty = {{M,w) | M is a TM that accepts input w}
Suppose H decides Aty

Consider the following TM D.
On input (M) where M is a TM:

1. Run H on input (M, (M))
2. If H accepts, reject. If H rejects, accept.

Question: What does D do on input (D)?
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How is this diagonalization?
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How is this diagonalization?

TMM |M((M1))? | M((M2))? | M((M3))? | M((M4))?

M, Y N Y Y
M, N N Y Y
M; Y Y Y N
M, N N Y N

D accepts input (M;) < M; does not accept input (M;)
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How is this diagonalization?
T™M M | M((M1))? | M((Mp))? | M((M3))? | M((M))? | | D(D))?
M, Y N Y Y

M, N N Y Y

M3 Y Y Y N

M, N N Y N

D

D accepts input (M;) < M; does not accept input (M;)
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Aty = {{M,w) | M is a TM that accepts input w}

On input (M, w):
1. Simulate running M on input w

2. If M accepts, accept. If M rejects, reject.
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