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The Basic Turing Machine (TM)
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Tape 𝑎 𝑏 𝑎 𝑎

Finite 
control

…

• Input is written on an infinitely long tape
• Head can both read and write, and move in both 

directions
• Computation halts when control reaches 

“accept” or “reject” state

Input

ran



Formal Definition of a TM

A TM is a 7-tuple 𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject)

• 𝑄 is a finite set of states

• Σ is the input alphabet (does not include ⊔)

• Γ is the tape alphabet (contains ⊔ and Σ)

• 𝑞0 ∈ 𝑄 is the start state

• 𝑞accept ∈ 𝑄 is the accept state

• 𝑞reject ∈ 𝑄 is the reject state (𝑞reject ≠ 𝑞accept)

• 𝛿 is the transition function
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ran



TM Transition Function
𝛿 ∶ 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅}

𝐿 means “move left” and 𝑅 means “move right”

𝛿 𝑝, 𝑎 = (𝑞, 𝑏, 𝑅) means:
• Replace 𝑎 with 𝑏 in current cell
• Transition from state 𝑝 to state 𝑞
• Move tape head right

𝛿 𝑝, 𝑎 = (𝑞, 𝑏, 𝐿) means:
• Replace 𝑎 with 𝑏 in current cell
• Transition from state 𝑝 to state 𝑞
• Move tape head left UNLESS we are at left end of tape, in 

which case don’t move
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Configuration of a TM

A string with captures a “a snapshot of the computation”
(should suffice to continue the computation)
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1 0 1 0 1 1 1 ⊔

𝑞5

…

ran



Configuration of a TM: Formally

A configuration is a string 𝑢𝑞𝑣 where 𝑞 ∈ 𝑄 and 𝑢, 𝑣 ∈ Γ∗

• Tape contents = 𝑢𝑣 (followed by blanks ⊔)

• Current state = 𝑞

• Tape head on first symbol of 𝑣
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1 0 1 0 1 1 1 ⊔

𝑞5

…

ran

ran



How a TM Computes

Start configuration: 𝑞0𝑤

One step of computation:

• 𝑢𝑎 𝑞 𝑏𝑣 yields 𝑢𝑎𝑐 𝑞′ 𝑣 if 𝛿 𝑞, 𝑏 = (𝑞′, 𝑐, 𝑅)

• 𝑢𝑎 𝑞 𝑏𝑣 yields 𝑢 𝑞′ 𝑎𝑐𝑣 if 𝛿 𝑞, 𝑏 = (𝑞′, 𝑐, 𝐿)

• 𝑞 𝑏𝑣 yields 𝑞′ 𝑐𝑣 if 𝛿 𝑞, 𝑏 = (𝑞′, 𝑐, 𝐿)

Accepting configuration: 𝑞 = 𝑞accept

Rejecting configuration: 𝑞 = 𝑞reject
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How a TM Computes

𝑀 accepts input 𝑤 if there is a sequence of configurations 
𝐶1, … , 𝐶𝑘 such that:

• 𝐶1 = 𝑞0𝑤

• 𝐶𝑖 yields 𝐶𝑖+1 for every 𝑖

• 𝐶𝑘 is an accepting configuration

𝐿(𝑀) = the set of all strings 𝑤 which 𝑀 accepts

𝐴 is Turing-recognizable if 𝐴 = 𝐿(𝑀) for some TM 𝑀:

• 𝑤 ∈ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞accept
• 𝑤 ∉ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞reject OR

𝑀 runs forever
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Recognizers vs. Deciders

• A  TM is a decider if it halts (i.e., either accepts or 
rejects) on all inputs.

𝐴 is (Turing-)decidable if 𝐴 = 𝐿(𝑀) for some TM 𝑀

which is a decider:

• 𝑤 ∈ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞accept

• 𝑤 ∉ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞reject
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Back to Hilbert’s Tenth Problem

Computational Problem: Given a Diophantine equation, 
does it have a solution over the integers?

𝐿 =

• 𝐿 is Turing-recognizable

• 𝐿 is not decidable (1949-70)
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Back to Hilbert’s Tenth Problem
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c1 +⋯+ anxn
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TM Variants
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How Robust is the TM Model?

Does changing the model result in different languages being 
recognizable / decidable?

Short answer:   No….

Longer answer:
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Extensions that do not increase the power of 
the TM model
• TMs that are allowed to “stay put” instead of moving 

left or right
𝛿 ∶ 𝑄 × Γ → 𝑄 × Γ × 𝐿, 𝑅, 𝑆

Proof that TMs with “stay put” are no more powerful:

Simulation: Convert any TM 𝑀 with “stay put” into an 
equivalent TM 𝑀′ without

Replace every “stay put” instruction in 𝑀 with a move 
right instruction, followed by a move left instruction in 𝑀’
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ran
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ran

ran
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ran



Extensions that do not increase the power of 
the TM model
• TMs with a 2-way infinite tape, unbounded left to right

Proof that TMs with 2-way infinite tapes are no more 
powerful:

Simulation: Convert any TM 𝑀 with 2-way infinite tape into 
a 1-way infinite TM 𝑀′ with a “two-track tape”
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Tape 𝑎 𝑏 𝑎 …

Input

…

ran



Formalizing the Simulation

𝑀′ = (𝑄′, Σ, Γ′, 𝛿′, 𝑞0
′ , 𝑞accept

′ , 𝑞reject
′ )

New tape alphabet: Γ′ = (Γ × Γ) ∪ {$}

New state set: 𝑄′ = 𝑄 × {+,−}

(𝑞, −) means “𝑞, working on upper track”

(𝑞, +) means “𝑞, working on lower track”

New transitions:

If 𝛿 𝑝, 𝑎− = (𝑞, 𝑏, 𝐿), let 𝛿′ 𝑝, − , 𝑎−, 𝑎+ = ( 𝑞,− , 𝑏, 𝑎+ , 𝑅)

Also need new transitions for moving right, lower track, hitting $,     

initializing input into 2-track format
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ran



Multi-Tape TMs
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𝑏 𝑏 𝑎 𝑎 𝑎

Finite 
control

𝑎 𝑏 ⊔ 𝑎 𝑎

⊔ 𝑏 𝑎 𝑎 𝑐

Fixed number of tapes 𝑘 (can’t change during computation)
Transition function 𝛿 ∶ 𝑄 × Γ𝑘 → 𝑄 × Γ𝑘 × 𝐿, 𝑅, 𝑆 𝑘

ran



Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every 𝑘-tape TM 𝑀 with can be simulated by an 
equivalent single-tape TM 𝑀′
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𝑏 𝑏 𝑎 𝑎

Finite 
control

𝑎 𝑏 ⊔ 𝑎

⊔ 𝑏 𝑎 𝑎

⊔ 𝑏 𝑎 𝑎 𝑐 #𝑎 𝑏 ⊔ 𝑎 #𝑏 𝑏 𝑎 𝑎 #
Finite 

control

ran

ran



Simulating Multiple Tapes

Implementation-Level Description

On input 𝑤 = 𝑤1𝑤2 …𝑤𝑛

1.  Format tape into # ሶ𝑤1𝑤2…𝑤𝑛# ሶ⊔ # ሶ⊔ #…#

2.  For each move of 𝑀:

Scan left-to-right, finding current symbols

Scan left-to-right, writing new symbols,

Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank

If a tape head goes off left end, move back right
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ran
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Non-deterministic TMs

At any point in computation, may non-deterministically 
branch. Accepts iff there exists an accepting branch.

Transition function 𝛿 ∶ 𝑄 × Γ → 𝑃(𝑄 × Γ × 𝐿, 𝑅, 𝑆 )

Ex. NTM for 𝑤 𝑤 is a binary number representing the 
product of two positive integers 𝑎, 𝑏}
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ran



Non-deterministic TMs

Theorem: Every nondeterministic TM has an equivalent 
deterministic TM

Proof idea: Simulate an NTM 𝑁 using a 3-tape TM
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𝑤1 𝑤2 𝑤3 𝑤4

Finite 
control

𝑤1 ⊔ # 𝑤3 𝑤4

1 3 3 7

Input 𝑤 to 𝑁 (read-only)

Simulation tape (run 𝑁 on 𝑤 using 
nondeterministic choices from tape 3)

Address in computation tree
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TMs are equivalent to… 

• TMs with “stay put”

• TMs with 2-way infinite tapes

• Multi-tape TMs

• Nondeterministic TMs

• Random access TMs

• Enumerators

• Finite automata with access to an unbounded queue = 2-
stack PDAs

• Primitive recursive functions

• Cellular automata

…
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Church-Turing Thesis

The equivalence of these models is a mathematical 
theorem

Church-Turing Thesis: Each of these models captures our 
intuitive notion of algorithms

The Church-Turing Thesis is not a mathematical 
statement!
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