
BU CS 332 – Theory of Computation

Lecture 11:

• TM Variants

• Closure Properties

Reading:

Sipser Ch 3.2

Ran Canetti

October 15, 2020

ran

The Basic Turing Machine (TM)

10/15/2020 CS332 - Theory of Computation 2

Tape 𝑎 𝑏 𝑎 𝑎

Finite
control

…

• Input is written on an infinitely long tape
• Head can both read and write, and move in both

directions
• Computation halts when control reaches

“accept” or “reject” state

Input

ran

Formal Definition of a TM

A TM is a 7-tuple 𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject)

• 𝑄 is a finite set of states

• Σ is the input alphabet (does not include ⊔)

• Γ is the tape alphabet (contains ⊔ and Σ)

• 𝑞0 ∈ 𝑄 is the start state

• 𝑞accept ∈ 𝑄 is the accept state

• 𝑞reject ∈ 𝑄 is the reject state (𝑞reject ≠ 𝑞accept)

• 𝛿 is the transition function

10/15/2020 CS332 - Theory of Computation 3

ran

TM Transition Function
𝛿 ∶ 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅}

𝐿 means “move left” and 𝑅 means “move right”

𝛿 𝑝, 𝑎 = (𝑞, 𝑏, 𝑅) means:
• Replace 𝑎 with 𝑏 in current cell
• Transition from state 𝑝 to state 𝑞
• Move tape head right

𝛿 𝑝, 𝑎 = (𝑞, 𝑏, 𝐿) means:
• Replace 𝑎 with 𝑏 in current cell
• Transition from state 𝑝 to state 𝑞
• Move tape head left UNLESS we are at left end of tape, in

which case don’t move

10/15/2020 CS332 - Theory of Computation 4

ran

TM Transition Function
𝛿 ∶ 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅}

𝐿 means “move left” and 𝑅 means “move right”

𝛿 𝑝, 𝑎 = (𝑞, 𝑏, 𝑅) means:
• Replace 𝑎 with 𝑏 in current cell
• Transition from state 𝑝 to state 𝑞
• Move tape head right

𝛿 𝑝, 𝑎 = (𝑞, 𝑏, 𝐿) means:
• Replace 𝑎 with 𝑏 in current cell
• Transition from state 𝑝 to state 𝑞
• Move tape head left UNLESS we are at left end of tape, in

which case don’t move

10/15/2020 CS332 - Theory of Computation 5

ran

Configuration of a TM

A string with captures a “a snapshot of the computation”
(should suffice to continue the computation)

10/15/2020 CS332 - Theory of Computation 6

1 0 1 0 1 1 1 ⊔

𝑞5

…

ran

Configuration of a TM: Formally

A configuration is a string 𝑢𝑞𝑣 where 𝑞 ∈ 𝑄 and 𝑢, 𝑣 ∈ Γ∗

• Tape contents = 𝑢𝑣 (followed by blanks ⊔)

• Current state = 𝑞

• Tape head on first symbol of 𝑣

10/15/2020 CS332 - Theory of Computation 7

1 0 1 0 1 1 1 ⊔

𝑞5

…

ran

ran

How a TM Computes

Start configuration: 𝑞0𝑤

One step of computation:

• 𝑢𝑎 𝑞 𝑏𝑣 yields 𝑢𝑎𝑐 𝑞′ 𝑣 if 𝛿 𝑞, 𝑏 = (𝑞′, 𝑐, 𝑅)

• 𝑢𝑎 𝑞 𝑏𝑣 yields 𝑢 𝑞′ 𝑎𝑐𝑣 if 𝛿 𝑞, 𝑏 = (𝑞′, 𝑐, 𝐿)

• 𝑞 𝑏𝑣 yields 𝑞′ 𝑐𝑣 if 𝛿 𝑞, 𝑏 = (𝑞′, 𝑐, 𝐿)

Accepting configuration: 𝑞 = 𝑞accept

Rejecting configuration: 𝑞 = 𝑞reject

10/15/2020 CS332 - Theory of Computation 8

ran

How a TM Computes

𝑀 accepts input 𝑤 if there is a sequence of configurations
𝐶1, … , 𝐶𝑘 such that:

• 𝐶1 = 𝑞0𝑤

• 𝐶𝑖 yields 𝐶𝑖+1 for every 𝑖

• 𝐶𝑘 is an accepting configuration

𝐿(𝑀) = the set of all strings 𝑤 which 𝑀 accepts

𝐴 is Turing-recognizable if 𝐴 = 𝐿(𝑀) for some TM 𝑀:

• 𝑤 ∈ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞accept
• 𝑤 ∉ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞reject OR

𝑀 runs forever

10/15/2020 CS332 - Theory of Computation 9

ran

How a TM Computes

𝑀 accepts input 𝑤 if there is a sequence of configurations
𝐶1, … , 𝐶𝑘 such that:

• 𝐶1 = 𝑞0𝑤

• 𝐶𝑖 yields 𝐶𝑖+1 for every 𝑖

• 𝐶𝑘 is an accepting configuration

𝐿(𝑀) = the set of all strings 𝑤 which 𝑀 accepts

𝐴 is Turing-recognizable if 𝐴 = 𝐿(𝑀) for some TM 𝑀:

• 𝑤 ∈ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞accept
• 𝑤 ∉ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞reject OR

𝑀 runs forever

10/15/2020 CS332 - Theory of Computation 10

ran

How a TM Computes

𝑀 accepts input 𝑤 if there is a sequence of configurations
𝐶1, … , 𝐶𝑘 such that:

• 𝐶1 = 𝑞0𝑤

• 𝐶𝑖 yields 𝐶𝑖+1 for every 𝑖

• 𝐶𝑘 is an accepting configuration

𝐿(𝑀) = the set of all strings 𝑤 which 𝑀 accepts

𝐴 is Turing-recognizable if 𝐴 = 𝐿(𝑀) for some TM 𝑀:

• 𝑤 ∈ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞accept
• 𝑤 ∉ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞reject OR

or 𝑀 runs forever

10/15/2020 CS332 - Theory of Computation 11

ran

Recognizers vs. Deciders

• A TM is a decider if it halts (i.e., either accepts or
rejects) on all inputs.

𝐴 is (Turing-)decidable if 𝐴 = 𝐿(𝑀) for some TM 𝑀

which is a decider:

• 𝑤 ∈ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞accept

• 𝑤 ∉ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞reject

10/15/2020 CS332 - Theory of Computation 12

ran

Recognizers vs. Deciders

• A TM is a decider if it halts (i.e., either accepts or
rejects) on all inputs.

𝐴 is (Turing-)decidable if 𝐴 = 𝐿(𝑀) for some TM 𝑀

which is a decider:

• 𝑤 ∈ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞accept

• 𝑤 ∉ 𝐴 ⟹ 𝑀 halts on 𝑤 in state 𝑞reject

10/15/2020 CS332 - Theory of Computation 13

ran

Back to Hilbert’s Tenth Problem

Computational Problem: Given a Diophantine equation,
does it have a solution over the integers?

𝐿 =

• 𝐿 is Turing-recognizable

• 𝐿 is not decidable (1949-70)

10/15/2020 CS332 - Theory of Computation 14

Back to Hilbert’s Tenth Problem

Computational Problem: Given a Diophantine equation,
does it have a solution over the integers?

𝐿 = {p = a1x1
c1 +⋯+ anxn

cn|∃𝑣1…𝑣𝑛 ∈ 𝑁 𝑠. 𝑡. 𝑝 𝑥1…𝑥𝑛 = 0}

• 𝐿 is Turing-recognizable

• 𝐿 is not decidable (1949-70)

10/15/2020 CS332 - Theory of Computation 15

ran

Back to Hilbert’s Tenth Problem

Computational Problem: Given a Diophantine equation,
does it have a solution over the integers?

𝐿 = {p = a1x1
c1 +⋯+ anxn

cn|∃𝑣1…𝑣𝑛 ∈ 𝑁 𝑠. 𝑡. 𝑝 𝑥1…𝑥𝑛 = 0}

• 𝐿 is Turing-recognizable

• 𝐿 is not decidable (1949-70)

10/15/2020 CS332 - Theory of Computation 16

TM Variants

10/15/2020 CS332 - Theory of Computation 17

How Robust is the TM Model?

Does changing the model result in different languages being
recognizable / decidable?

Short answer: No….

Longer answer:

10/15/2020 CS332 - Theory of Computation 18

ran

Extensions that do not increase the power of
the TM model
• TMs that are allowed to “stay put” instead of moving

left or right
𝛿 ∶ 𝑄 × Γ → 𝑄 × Γ × 𝐿, 𝑅, 𝑆

Proof that TMs with “stay put” are no more powerful:

Simulation: Convert any TM 𝑀 with “stay put” into an
equivalent TM 𝑀′ without

Replace every “stay put” instruction in 𝑀 with a move
right instruction, followed by a move left instruction in 𝑀’

10/15/2020 CS332 - Theory of Computation 19

ran

10/15/2020 CS332 - Theory of Computation 20

ran

ran

10/15/2020 CS332 - Theory of Computation 21

ran

Extensions that do not increase the power of
the TM model
• TMs with a 2-way infinite tape, unbounded left to right

Proof that TMs with 2-way infinite tapes are no more
powerful:

Simulation: Convert any TM 𝑀 with 2-way infinite tape into
a 1-way infinite TM 𝑀′ with a “two-track tape”

10/15/2020 CS332 - Theory of Computation 22

Tape 𝑎 𝑏 𝑎 …

Input

…

ran

Formalizing the Simulation

𝑀′ = (𝑄′, Σ, Γ′, 𝛿′, 𝑞0
′ , 𝑞accept

′ , 𝑞reject
′)

New tape alphabet: Γ′ = (Γ × Γ) ∪ {$}

New state set: 𝑄′ = 𝑄 × {+,−}

(𝑞, −) means “𝑞, working on upper track”

(𝑞, +) means “𝑞, working on lower track”

New transitions:

If 𝛿 𝑝, 𝑎− = (𝑞, 𝑏, 𝐿), let 𝛿′ 𝑝, − , 𝑎−, 𝑎+ = (𝑞,− , 𝑏, 𝑎+ , 𝑅)

Also need new transitions for moving right, lower track, hitting $,

initializing input into 2-track format

10/15/2020 CS332 - Theory of Computation 23

ran

Multi-Tape TMs

10/15/2020 CS332 - Theory of Computation 24

𝑏 𝑏 𝑎 𝑎 𝑎

Finite
control

𝑎 𝑏 ⊔ 𝑎 𝑎

⊔ 𝑏 𝑎 𝑎 𝑐

Fixed number of tapes 𝑘 (can’t change during computation)
Transition function 𝛿 ∶ 𝑄 × Γ𝑘 → 𝑄 × Γ𝑘 × 𝐿, 𝑅, 𝑆 𝑘

ran

Multi-Tape TMs are Equivalent to Single-Tape TMs

Theorem: Every 𝑘-tape TM 𝑀 with can be simulated by an
equivalent single-tape TM 𝑀′

10/15/2020 CS332 - Theory of Computation 25

𝑏 𝑏 𝑎 𝑎

Finite
control

𝑎 𝑏 ⊔ 𝑎

⊔ 𝑏 𝑎 𝑎

⊔ 𝑏 𝑎 𝑎 𝑐 #𝑎 𝑏 ⊔ 𝑎 #𝑏 𝑏 𝑎 𝑎 #
Finite

control

ran

ran

Simulating Multiple Tapes

Implementation-Level Description

On input 𝑤 = 𝑤1𝑤2 …𝑤𝑛

1. Format tape into # ሶ𝑤1𝑤2…𝑤𝑛# ሶ⊔ # ሶ⊔ #…#

2. For each move of 𝑀:

Scan left-to-right, finding current symbols

Scan left-to-right, writing new symbols,

Scan left-to-right, moving each tape head

If a tape head goes off the right end, insert blank

If a tape head goes off left end, move back right

10/15/2020 CS332 - Theory of Computation 26

ran

10/15/2020 CS332 - Theory of Computation 27

Non-deterministic TMs

At any point in computation, may non-deterministically
branch. Accepts iff there exists an accepting branch.

Transition function 𝛿 ∶ 𝑄 × Γ → 𝑃(𝑄 × Γ × 𝐿, 𝑅, 𝑆)

Ex. NTM for 𝑤 𝑤 is a binary number representing the
product of two positive integers 𝑎, 𝑏}

10/15/2020 CS332 - Theory of Computation 28

ran

Non-deterministic TMs

Theorem: Every nondeterministic TM has an equivalent
deterministic TM

Proof idea: Simulate an NTM 𝑁 using a 3-tape TM

10/15/2020 CS332 - Theory of Computation 29

𝑤1 𝑤2 𝑤3 𝑤4

Finite
control

𝑤1 ⊔ # 𝑤3 𝑤4

1 3 3 7

Input 𝑤 to 𝑁 (read-only)

Simulation tape (run 𝑁 on 𝑤 using
nondeterministic choices from tape 3)

Address in computation tree

10/15/2020 CS332 - Theory of Computation 30

TMs are equivalent to…

• TMs with “stay put”

• TMs with 2-way infinite tapes

• Multi-tape TMs

• Nondeterministic TMs

• Random access TMs

• Enumerators

• Finite automata with access to an unbounded queue = 2-
stack PDAs

• Primitive recursive functions

• Cellular automata

…

10/15/2020 CS332 - Theory of Computation 31

Church-Turing Thesis

The equivalence of these models is a mathematical
theorem

Church-Turing Thesis: Each of these models captures our
intuitive notion of algorithms

The Church-Turing Thesis is not a mathematical
statement!

10/15/2020 CS332 - Theory of Computation 32

