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Context-Free Grammar (Formal)

A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

• 𝑉 is a finite set of variables

• Σ is a finite set of terminal symbols (disjoint from 𝑉)

• 𝑅 is a finite set of production rules of the form 𝐴 → 𝑤, 
where 𝐴 ∈ 𝑉 and 𝑤 ∈ (𝑉 ∪ Σ)∗

• 𝑆 ∈ 𝑉 is the start variable

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆)

where 
Σ = 𝑎, 𝑏

𝑅 = {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝜀}
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Context-Free Languages
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𝐿 is a context-free 
language if it is the 

language of some CFG

Questions about CFLs

1. Which languages are not
context-free?

2. What are the closure 
properties of CFLs?

3. How do we recognize 
whether 𝑤 ∈ 𝐿?



Pumping Lemma for context-free languages
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Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑣𝑦| > 0

2.  |𝑣𝑥𝑦| ≤ 𝑝

3.  𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:



Pumping Lemma: Proof idea

Let 𝐿 be a context-free language. If 𝑤 ∈ 𝐿 is long enough, 
then every parse tree for 𝑤 has a repeated variable.
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Pumping Lemma Proof

What does “long enough” mean? (How do we choose the 
pumping length 𝑝?)

• Let 𝐺 be a CFG for 𝐿

• Suppose the right-hand side of every rule in 𝐺 uses at 
most 𝑏 symbols

• Let 𝑝 = 𝑏 𝑉 +1

Claim: If 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝, then the smallest parse tree 
for 𝑤 has height at least 𝑉 + 1
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Pumping Lemma for context-free languages
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Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑣𝑦| > 0

2.  |𝑣𝑥𝑦| ≤ 𝑝

3.  𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:



Pumping Lemma for context-free languages
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Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑣𝑦| > 0

2.  |𝑣𝑥𝑦| ≤ 𝑝

3.  𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example: 
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 00000



Pumping Lemma for context-free languages

9/29/2020 CS332 - Theory of Computation 9

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑣𝑦| > 0

2.  |𝑣𝑥𝑦| ≤ 𝑝

3.  𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example: 
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 00



Pumping Lemma for context-free languages
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Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑣𝑦| > 0

2.  |𝑣𝑥𝑦| ≤ 𝑝

3.  𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example: 
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 010



Pumping Lemma as a game
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1. YOU pick the language 𝐿 to be proved non context-free.

2. ADVERSARY picks a possible pumping length 𝑝.

3. YOU pick 𝑤 of length at least 𝑝.

4. ADVERSARY divides 𝑤 into 𝑢, 𝑣, 𝑥, 𝑦, 𝑧, obeying rules of the 
Pumping Lemma:        |𝑣𝑦| > 0 and      |𝑣𝑥𝑦| ≤ 𝑝. 

5. YOU win by finding 𝑖 ≥ 0, for which 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 is not in 𝐿.

If regardless of how the ADVERSARY plays this game, you 
can always win, then 𝐿 is non context-free



Pumping Lemma example
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Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with     |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…



9/29/2020 CS332 - Theory of Computation 13



Context-Free Languages

9/29/2020 CS332 - Theory of Computation 14

𝐿 is a context-free 
language if it is the 

language of some CFG

Questions about CFLs

1. Which languages are not
context-free?

2. What are the closure 
properties of CFLs?

3. How do we recognize 
whether 𝑤 ∈ 𝐿?



Closure Properties

• The class of CFLs is closed under the regular operations 
union, concatenation, star
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Closure under union

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL 
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 ∪ 𝑆 , Σ = Σ𝐴 ∪ Σ𝐵 ,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝑆𝐴|𝑆𝐵}
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Closure under union

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL 
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 ∪ 𝑆 , Σ = Σ𝐴 ∪ Σ𝐵 ,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝑆𝐴|𝑆𝐵}
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Closure under concatenation

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL 
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 ∪ 𝑆 , Σ = Σ𝐴 ∪ Σ𝐵 ,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝑆𝐴𝑆𝐵}
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Closure under concatenation

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL 
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 ∪ 𝑆 , Σ = Σ𝐴 ∪ Σ𝐵 ,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝑆𝐴𝑆𝐵}
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Closure under star

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL 
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑆 , Σ = Σ𝐴,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝜖|𝑆 𝑆𝐴}
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Closure under star

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL 
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑆 , Σ = Σ𝐴,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝜖|𝑆 𝑆𝐴}
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Closure Properties

• The class of CFLs is closed under the regular operations 
union, concatenation, star

• Are CFLs closed under complement?   
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Closure Properties

• The class of CFLs is closed under the regular operations 
union, concatenation, star

• Are CFLs closed under complement? 

• What about intersection?  
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Context-Free Languages
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𝐿 is a context-free 
language if it is the 

language of some CFG

Questions about CFLs

1. Which languages are not
context-free?

2. What are the closure 
properties of CFLs?

3. How do we recognize 
whether 𝑤 ∈ 𝐿?



Recognizing CFLs

• Need to somehow extend  NDAs…  (Need memory!)

• Standard extension:  “Pushdown automata (PDAs)”
• NDA’s with limited memory (arranged as a stack)

• Can:
• Given any CFG G,  construct a PDA  P s.t. L(G)=L(P)

• Given any PDA P, construct a CFG G s.t. L(G)=L(P)

• Still, a bit unsatisfying since PDAs are non-deterministic…

• Non-determinism seems “inherent”: There exist “ambiguous 
CFGs” where some words have several parse-trees

• Can overcome by transforming a CFG to an equivalent one that is 
unambiguous.

We will skip this part,  and answer the recognizability question 
more generally…
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Turing Machines
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The Basic Turing Machine (TM)
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Tape 𝑎 𝑏 𝑎 𝑎

Finite 
control

…

• Input is written on an infinitely long tape
• Head can both read and write, and move in both 

directions
• Computation halts when control reaches 

“accept” or “reject” state

Input



0 → 0, 𝑅

⊔→⊔,𝑅

𝑞accept

𝑞reject

0 → 0, 𝑅

⊔ → ⊔,𝑅

Example

𝑞0 𝑞1



Example

0 → 0, 𝑅

⊔→⊔,𝑅

𝑞accept

𝑞reject

0 → 0, 𝑅

⊔→⊔,𝑅

0 → 0, 𝑅

⊔→⊔, 𝐿

𝑞0 𝑞1

𝑞3



TMs vs. Finite / Pushdown Automata
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Three Levels of Abstraction

High-Level Description

An algorithm (like CS 330)

Implementation-Level Description

Describe (in English) the instructions for a TM

• How to move the head

• What to write on the tape

Low-Level Description

State diagram or formal specification
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Example

Decide if 𝑤 ∈ 𝐴 = 02
𝑛

𝑛 ≥ 0}

High-Level Description

Repeat the following:

• If there is exactly one 0 in 𝑤, accept

• If there is an odd number of 0s in 𝑤 (> 1), reject

• Delete half of the 0s in 𝑤

9/29/2020 CS332 - Theory of Computation 32



Example

Decide if 𝑤 ∈ 𝐴 = 02
𝑛

𝑛 ≥ 0}

Implementation-Level Description

1. While moving the tape head left-to-right:
a) Cross off every other 0
b) If there is exactly one 0 when we reach the right end of the 

tape, accept
c) If there is an odd number of 0s when we reach the right 

end of the tape, reject

2. Return the head to the left end of the tape

3. Go back to step 1
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Example

Decide if 𝑤 ∈ 𝐴 = 02
𝑛

𝑛 ≥ 0}

Low-Level Description
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Formal Definition of a TM

A TM is a 7-tuple 𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject)

• 𝑄 is a finite set of states

• Σ is the input alphabet (does not include ⊔)

• Γ is the tape alphabet (contains ⊔ and Σ)

• 𝛿 is the transition function

…more on this later

• 𝑞0 ∈ 𝑄 is the start state

• 𝑞accept ∈ 𝑄 is the accept state

• 𝑞reject ∈ 𝑄 is the reject state (𝑞reject ≠ 𝑞accept)
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TM Transition Function
𝛿 ∶ 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅}

𝐿 means “move left” and 𝑅 means “move right”

𝛿 𝑝, 𝑎 = (𝑞, 𝑏, 𝑅) means:
• Replace 𝑎 with 𝑏 in current cell
• Transition from state 𝑝 to state 𝑞
• Move tape head right

𝛿 𝑝, 𝑎 = (𝑞, 𝑏, 𝐿) means:
• Replace 𝑎 with 𝑏 in current cell
• Transition from state 𝑝 to state 𝑞
• Move tape head left UNLESS we are at left end of tape, in 

which case don’t move
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