
BU CS 332 – Theory of Computation

Lecture 8:

• Pumping lemma for CFLs

• Closure properties for CFLs

• Turing machines

Reading:

Sipser Ch 2.1,
2.3, 3.1, 3.2

Ran Canetti

September 29, 2020

Context-Free Grammar (Formal)

A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

• 𝑉 is a finite set of variables

• Σ is a finite set of terminal symbols (disjoint from 𝑉)

• 𝑅 is a finite set of production rules of the form 𝐴 → 𝑤,
where 𝐴 ∈ 𝑉 and 𝑤 ∈ (𝑉 ∪ Σ)∗

• 𝑆 ∈ 𝑉 is the start variable

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆)

where
Σ = 𝑎, 𝑏

𝑅 = {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝜀}

9/24/2020 CS332 - Theory of Computation 2

Context-Free Languages

9/29/2020 CS332 - Theory of Computation 3

𝐿 is a context-free
language if it is the

language of some CFG

Questions about CFLs

1. Which languages are not
context-free?

2. What are the closure
properties of CFLs?

3. How do we recognize
whether 𝑤 ∈ 𝐿?

Pumping Lemma for context-free languages

9/24/2020 CS332 - Theory of Computation 4

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑣𝑦| > 0

2. |𝑣𝑥𝑦| ≤ 𝑝

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Pumping Lemma: Proof idea

Let 𝐿 be a context-free language. If 𝑤 ∈ 𝐿 is long enough,
then every parse tree for 𝑤 has a repeated variable.

9/24/2020 CS332 - Theory of Computation 5

Pumping Lemma Proof

What does “long enough” mean? (How do we choose the
pumping length 𝑝?)

• Let 𝐺 be a CFG for 𝐿

• Suppose the right-hand side of every rule in 𝐺 uses at
most 𝑏 symbols

• Let 𝑝 = 𝑏 𝑉 +1

Claim: If 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝, then the smallest parse tree
for 𝑤 has height at least 𝑉 + 1

9/24/2020 CS332 - Theory of Computation 6

Pumping Lemma for context-free languages

9/24/2020 CS332 - Theory of Computation 7

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑣𝑦| > 0

2. |𝑣𝑥𝑦| ≤ 𝑝

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Pumping Lemma for context-free languages

9/29/2020 CS332 - Theory of Computation 8

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑣𝑦| > 0

2. |𝑣𝑥𝑦| ≤ 𝑝

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example:
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 00000

Pumping Lemma for context-free languages

9/29/2020 CS332 - Theory of Computation 9

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑣𝑦| > 0

2. |𝑣𝑥𝑦| ≤ 𝑝

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example:
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 00

Pumping Lemma for context-free languages

9/24/2020 CS332 - Theory of Computation 10

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑣𝑦| > 0

2. |𝑣𝑥𝑦| ≤ 𝑝

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example:
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 010

Pumping Lemma as a game

9/24/2020 CS332 - Theory of Computation 11

1. YOU pick the language 𝐿 to be proved non context-free.

2. ADVERSARY picks a possible pumping length 𝑝.

3. YOU pick 𝑤 of length at least 𝑝.

4. ADVERSARY divides 𝑤 into 𝑢, 𝑣, 𝑥, 𝑦, 𝑧, obeying rules of the
Pumping Lemma: |𝑣𝑦| > 0 and |𝑣𝑥𝑦| ≤ 𝑝.

5. YOU win by finding 𝑖 ≥ 0, for which 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 is not in 𝐿.

If regardless of how the ADVERSARY plays this game, you
can always win, then 𝐿 is non context-free

Pumping Lemma example

9/24/2020 CS332 - Theory of Computation 12

Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

9/29/2020 CS332 - Theory of Computation 13

Context-Free Languages

9/29/2020 CS332 - Theory of Computation 14

𝐿 is a context-free
language if it is the

language of some CFG

Questions about CFLs

1. Which languages are not
context-free?

2. What are the closure
properties of CFLs?

3. How do we recognize
whether 𝑤 ∈ 𝐿?

Closure Properties

• The class of CFLs is closed under the regular operations
union, concatenation, star

9/29/2020 CS332 - Theory of Computation 15

Closure under union

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 ∪ 𝑆 , Σ = Σ𝐴 ∪ Σ𝐵 ,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝑆𝐴|𝑆𝐵}

9/29/2020 CS332 - Theory of Computation 16

Closure under union

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 ∪ 𝑆 , Σ = Σ𝐴 ∪ Σ𝐵 ,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝑆𝐴|𝑆𝐵}

9/29/2020 CS332 - Theory of Computation 17

Closure under concatenation

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 ∪ 𝑆 , Σ = Σ𝐴 ∪ Σ𝐵 ,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝑆𝐴𝑆𝐵}

9/29/2020 CS332 - Theory of Computation 18

Closure under concatenation

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 ∪ 𝑆 , Σ = Σ𝐴 ∪ Σ𝐵 ,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝑆𝐴𝑆𝐵}

9/29/2020 CS332 - Theory of Computation 19

Closure under star

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑆 , Σ = Σ𝐴,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝜖|𝑆 𝑆𝐴}

9/29/2020 CS332 - Theory of Computation 20

Closure under star

Let 𝐴 be a CFL generated by CFG 𝐺𝐴 and let 𝐵 be a CFL
recognized by CFG 𝐺𝐵
Goal: Construct a CFG 𝐺 recognizing 𝐴 ∪ 𝐵

𝐺𝐴 = (𝑉𝐴, Σ𝐴, 𝑅𝐴, 𝑆𝐴)

𝐺𝐵 = (𝑉𝐵 , Σ𝐵 , 𝑅𝐵 , 𝑆𝐵)

Relabel variables so 𝑉𝐴 and 𝑉𝐵 are disjoint

Construct 𝐺 = 𝑉, Σ , 𝑅 , 𝑆 :
𝑉 = 𝑉𝐴 ∪ 𝑆 , Σ = Σ𝐴,
𝑅 = 𝑅A ∪ 𝑅𝐵 ∪ {𝑆 → 𝜖|𝑆 𝑆𝐴}

9/29/2020 CS332 - Theory of Computation 21

Closure Properties

• The class of CFLs is closed under the regular operations
union, concatenation, star

• Are CFLs closed under complement?

9/29/2020 CS332 - Theory of Computation 22

Closure Properties

• The class of CFLs is closed under the regular operations
union, concatenation, star

• Are CFLs closed under complement?

• What about intersection?

9/29/2020 CS332 - Theory of Computation 23

Context-Free Languages

9/29/2020 CS332 - Theory of Computation 24

𝐿 is a context-free
language if it is the

language of some CFG

Questions about CFLs

1. Which languages are not
context-free?

2. What are the closure
properties of CFLs?

3. How do we recognize
whether 𝑤 ∈ 𝐿?

Recognizing CFLs

• Need to somehow extend NDAs… (Need memory!)

• Standard extension: “Pushdown automata (PDAs)”
• NDA’s with limited memory (arranged as a stack)

• Can:
• Given any CFG G, construct a PDA P s.t. L(G)=L(P)

• Given any PDA P, construct a CFG G s.t. L(G)=L(P)

• Still, a bit unsatisfying since PDAs are non-deterministic…

• Non-determinism seems “inherent”: There exist “ambiguous
CFGs” where some words have several parse-trees

• Can overcome by transforming a CFG to an equivalent one that is
unambiguous.

We will skip this part, and answer the recognizability question
more generally…

9/29/2020 CS332 - Theory of Computation 25

Turing Machines

9/29/2020 CS332 - Theory of Computation 26

The Basic Turing Machine (TM)

9/29/2020 CS332 - Theory of Computation 27

Tape 𝑎 𝑏 𝑎 𝑎

Finite
control

…

• Input is written on an infinitely long tape
• Head can both read and write, and move in both

directions
• Computation halts when control reaches

“accept” or “reject” state

Input

0 → 0, 𝑅

⊔→⊔,𝑅

𝑞accept

𝑞reject

0 → 0, 𝑅

⊔ → ⊔,𝑅

Example

𝑞0 𝑞1

Example

0 → 0, 𝑅

⊔→⊔,𝑅

𝑞accept

𝑞reject

0 → 0, 𝑅

⊔→⊔,𝑅

0 → 0, 𝑅

⊔→⊔, 𝐿

𝑞0 𝑞1

𝑞3

TMs vs. Finite / Pushdown Automata

9/29/2020 CS332 - Theory of Computation 30

Three Levels of Abstraction

High-Level Description

An algorithm (like CS 330)

Implementation-Level Description

Describe (in English) the instructions for a TM

• How to move the head

• What to write on the tape

Low-Level Description

State diagram or formal specification

9/29/2020 CS332 - Theory of Computation 31

Example

Decide if 𝑤 ∈ 𝐴 = 02
𝑛

𝑛 ≥ 0}

High-Level Description

Repeat the following:

• If there is exactly one 0 in 𝑤, accept

• If there is an odd number of 0s in 𝑤 (> 1), reject

• Delete half of the 0s in 𝑤

9/29/2020 CS332 - Theory of Computation 32

Example

Decide if 𝑤 ∈ 𝐴 = 02
𝑛

𝑛 ≥ 0}

Implementation-Level Description

1. While moving the tape head left-to-right:
a) Cross off every other 0
b) If there is exactly one 0 when we reach the right end of the

tape, accept
c) If there is an odd number of 0s when we reach the right

end of the tape, reject

2. Return the head to the left end of the tape

3. Go back to step 1

9/29/2020 CS332 - Theory of Computation 33

Example

Decide if 𝑤 ∈ 𝐴 = 02
𝑛

𝑛 ≥ 0}

Low-Level Description

9/29/2020 CS332 - Theory of Computation 34

Formal Definition of a TM

A TM is a 7-tuple 𝑀 = (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞accept, 𝑞reject)

• 𝑄 is a finite set of states

• Σ is the input alphabet (does not include ⊔)

• Γ is the tape alphabet (contains ⊔ and Σ)

• 𝛿 is the transition function

…more on this later

• 𝑞0 ∈ 𝑄 is the start state

• 𝑞accept ∈ 𝑄 is the accept state

• 𝑞reject ∈ 𝑄 is the reject state (𝑞reject ≠ 𝑞accept)

9/29/2020 CS332 - Theory of Computation 35

TM Transition Function
𝛿 ∶ 𝑄 × Γ → 𝑄 × Γ × {𝐿, 𝑅}

𝐿 means “move left” and 𝑅 means “move right”

𝛿 𝑝, 𝑎 = (𝑞, 𝑏, 𝑅) means:
• Replace 𝑎 with 𝑏 in current cell
• Transition from state 𝑝 to state 𝑞
• Move tape head right

𝛿 𝑝, 𝑎 = (𝑞, 𝑏, 𝐿) means:
• Replace 𝑎 with 𝑏 in current cell
• Transition from state 𝑝 to state 𝑞
• Move tape head left UNLESS we are at left end of tape, in

which case don’t move

9/29/2020 CS332 - Theory of Computation 36

