
BU CS 332 – Theory of Computation

Lecture 7:

• Context-free grammars

• Pumping lemma for CFLs

Reading:

Sipser Ch 2.1,
2.3

Ran Canetti

September 24, 2020

Context-Free Grammars

9/24/2020 CS332 - Theory of Computation 2

Some History

An abstract model for two distinct problems

Rules for parsing natural languages

9/24/2020 CS332 - Theory of Computation 3

Parsing an English sentence

9/24/2020 CS332 - Theory of Computation 4

Some History

An abstract model for two distinct problems

Specification of syntax and compilation for programming
languages

9/24/2020 CS332 - Theory of Computation 5

1977 ACM Turing Award citation
(John Backus)

For profound, influential, and lasting
contributions to the design of practical high-
level programming systems, notably through

his work on FORTRAN, and for seminal
publication of formal procedures for the
specification of programming languages.

Parsing a computer program

9/24/2020 CS332 - Theory of Computation 6

Context-Free Grammar (Informal)

Example Grammar 𝐺

𝐴 → 0𝐴1
𝐴 → 𝐵
𝐵 → #

Derivation

𝐿(𝐺) =

9/24/2020 CS332 - Theory of Computation 7

Context-Free Grammar (Informal)
Example Grammar 𝐺

𝐸 → 𝐸 + 𝑇
𝐸 → 𝑇
𝑇 → 𝑇 × 𝐹
𝑇 → 𝐹
𝐹 → (𝐸)
𝐹 → 𝑎
𝐹 → 𝑏

Derivation

𝐿(𝐺) =

9/24/2020 CS332 - Theory of Computation 8

Socially Awkward Professor Grammar

9/24/2020 CS332 - Theory of Computation 9

<PHRASE> → <START><END>

<PHRASE> → <FILLER><PHRASE>

<FILLER> → LIKE

<FILLER> → UMM

<START> → YOU KNOW

<END> → WHOOPS

<START> → ε

<END> → SORRY

<END> → $#@!

Socially Awkward Professor Grammar

9/24/2020 CS332 - Theory of Computation 10

<PHRASE> → <FILLER><PHRASE> | <START><END>

<FILLER> → LIKE | UMM

<START> → YOU KNOW | ε

<END> → WHOOPS | SORRY | $#@!

Socially Awkward Professor Grammar

9/24/2020 CS332 - Theory of Computation 11

<PHRASE> → <FILLER><PHRASE> | <START><END>

<FILLER> → LIKE | UMM

<START> → YOU KNOW | ε

<END> → WHOOPS | SORRY | $#@!

Is “ YOU KNOW LIKE WHOOPS SORRY” In the language of this grammar?

Context-Free Grammar (Formal)

A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

• 𝑉 is a finite set of variables

• Σ is a finite set of terminal symbols (disjoint from 𝑉)

• 𝑅 is a finite set of production rules of the form 𝐴 → 𝑤,
where 𝐴 ∈ 𝑉 and 𝑤 ∈ (𝑉 ∪ Σ)∗

• 𝑆 ∈ 𝑉 is the start variable

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆)

where
Σ = 𝑎, 𝑏

𝑅 = {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝜀}

9/24/2020 CS332 - Theory of Computation 12

Context-Free Grammar (Formal)
A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

𝑉 = variables Σ = terminals 𝑅 = rules 𝑆 = start

• A state is a sequence of variables and terminals

• We say that state 𝑎 derives state 𝑏 (𝑎 ⇒ 𝑏) if 𝑛 is obtained be applying a rule
to one of the variables in 𝑎.

eg, 𝑢𝐴𝑣 ⇒ 𝑢𝑤𝑣 (“𝑢𝐴𝑣 yields 𝑢𝑤𝑣”) if 𝐴 → 𝑤 is a rule of the grammar.

• We say a ⇒
∗ 𝑏 (“𝑎 derives 𝑏”) if a= 𝑏 or there exists a sequence such that a⇒

𝑎1 ⇒ 𝑎2 ⇒ ⋯ ⇒ 𝑏

• Language of the grammar: 𝐿 𝐺 = {𝑤 ∈ Σ∗|𝑆 ⇒
∗ 𝑤}

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆) where 𝑅 = {𝑆 → 𝑢𝑆𝑣, 𝑆 → 𝜀}

𝐿 𝐺 = 𝑢𝑛𝑣𝑛 𝑛 ≥ 0}

9/24/2020 CS332 - Theory of Computation 13

Context-Free Grammar (Formal)
A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

𝑉 = variables Σ = terminals 𝑅 = rules 𝑆 = start

• A state is a sequence of variables and terminals

• We say that state 𝑎 derives state 𝑏 (𝑎 ⇒ 𝑏) if 𝑛 is obtained be applying a rule
to one of the variables in 𝑎.

eg, 𝑢𝐴𝑣 ⇒ 𝑢𝑤𝑣 (“𝑢𝐴𝑣 yields 𝑢𝑤𝑣”) if 𝐴 → 𝑤 is a rule of the grammar.

• We say a ⇒
∗ 𝑏 (“𝑎 derives 𝑏”) if a= 𝑏 or there exists a sequence such that a⇒

𝑎1 ⇒ 𝑎2 ⇒ ⋯ ⇒ 𝑏

• Language of the grammar: 𝐿 𝐺 = {𝑤 ∈ Σ∗|𝑆 ⇒
∗ 𝑤}

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆) where 𝑅 = {𝑆 → 𝑢𝑆𝑣, 𝑆 → 𝜀}

𝐿 𝐺 = 𝑢𝑛𝑣𝑛 𝑛 ≥ 0}

9/24/2020 CS332 - Theory of Computation 14

Context-Free Grammar (Formal)
A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

𝑉 = variables Σ = terminals 𝑅 = rules 𝑆 = start

• A state is a sequence of variables and terminals

• We say that state 𝑎 derives state 𝑏 (𝑎 ⇒ 𝑏) if 𝑛 is obtained be applying a rule
to one of the variables in 𝑎.

eg, 𝑢𝐴𝑣 ⇒ 𝑢𝑤𝑣 (“𝑢𝐴𝑣 yields 𝑢𝑤𝑣”) if 𝐴 → 𝑤 is a rule of the grammar.

• We say a ⇒
∗ 𝑏 (“𝑎 derives 𝑏”) if a= 𝑏 or there exists a sequence such that a⇒

𝑎1 ⇒ 𝑎2 ⇒ ⋯ ⇒ 𝑏

• Language of the grammar: 𝐿 𝐺 = {𝑤 ∈ Σ∗|𝑆 ⇒
∗ 𝑤}

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆) where 𝑅 = {𝑆 → 𝑢𝑆𝑣, 𝑆 → 𝜀}

𝐿 𝐺 = 𝑢𝑛𝑣𝑛 𝑛 ≥ 0}

9/24/2020 CS332 - Theory of Computation 15

Context-Free Grammar (Formal)
A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

𝑉 = variables Σ = terminals 𝑅 = rules 𝑆 = start

• A state is a sequence of variables and terminals

• We say that state 𝑎 derives state 𝑏 (𝑎 ⇒ 𝑏) if 𝑛 is obtained be applying a rule
to one of the variables in 𝑎.

eg, 𝑢𝐴𝑣 ⇒ 𝑢𝑤𝑣 (“𝑢𝐴𝑣 yields 𝑢𝑤𝑣”) if 𝐴 → 𝑤 is a rule of the grammar.

• We say a ⇒
∗ 𝑏 (“𝑎 derives 𝑏”) if a= 𝑏 or there exists a sequence such that a⇒

𝑎1 ⇒ 𝑎2 ⇒ ⋯ ⇒ 𝑏

• Language of the grammar: 𝐿 𝐺 = {𝑤 ∈ Σ∗|𝑆 ⇒
∗ 𝑤}

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆) where 𝑅 = {𝑆 → 𝑢𝑆𝑣, 𝑆 → 𝜀}

𝐿 𝐺 = 𝑢𝑛𝑣𝑛 𝑛 ≥ 0}

9/24/2020 CS332 - Theory of Computation 16

CFG Examples

Give context-free grammars for the following languages

1. The empty language

2. Strings of properly nested parentheses

3. Strings with equal # of 𝑎’s and 𝑏’s

9/24/2020 CS332 - Theory of Computation 17

Context-Free Languages

9/24/2020 CS332 - Theory of Computation 18

𝐿 is a context-free
language if it is the

language of some CFG

Questions about CFLs

1. Which languages are not
context-free?

2. How do we recognize
whether 𝑤 ∈ 𝐿?

3. What are the closure
properties of CFLs?

Pumping Lemma for context-free languages

9/24/2020 CS332 - Theory of Computation 19

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑣𝑦| > 0

2. |𝑣𝑥𝑦| ≤ 𝑝

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Pumping Lemma example

9/24/2020 CS332 - Theory of Computation 20

Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not context-free

Proof: Assume 𝐿 is context-free with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

Case 1: 𝑣, 𝑦 both contain only one kind of symbol

Case 2: Either 𝑣 or 𝑦 contains two kinds of symbols

Pumping Lemma example

9/24/2020 CS332 - Theory of Computation 21

Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not context-free

Proof: Assume 𝐿 is context-free with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

Case 1: 𝑣, 𝑦 both contain only one kind of symbol

Pumping Lemma example

9/24/2020 CS332 - Theory of Computation 22

Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not context-free

Proof: Assume 𝐿 is context-free with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

Case 2: Either 𝑣 or 𝑦 contains two kinds of symbols

Pumping Lemma: Proof idea

Let 𝐿 be a context-free language. If 𝑤 ∈ 𝐿 is long enough,
then every parse tree for 𝑤 has a repeated variable.

9/24/2020 CS332 - Theory of Computation 23

Pumping Lemma Proof

What does “long enough” mean? (How do we choose the
pumping length 𝑝?)

• Let 𝐺 be a CFG for 𝐿

• Suppose the right-hand side of every rule in 𝐺 uses at
most 𝑏 symbols

• Let 𝑝 = 𝑏 𝑉 +1

Claim: If 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝, then the smallest parse tree
for 𝑤 has height at least 𝑉 + 1

9/24/2020 CS332 - Theory of Computation 24

Pumping Lemma Proof

Claim: If 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝, then the smallest parse tree
for 𝑤 has height at least 𝑉 + 1

• By the pigeonhole principle, there is a path down the parse tree
with a repeated variable 𝑅

• Choose two such occurrences within the bottom 𝑉 + 1 levels

9/24/2020 CS332 - Theory of Computation 25

Context-Free Languages

9/24/2020 CS332 - Theory of Computation 26

𝐿 is a context-free
language if it is the

language of some CFG

Questions about CFLs

1. Which languages are not
context-free?

2. How do we recognize
whether 𝑤 ∈ 𝐿?

3. What are the closure
properties of CFLs?

Pumping Lemma for regular languages

9/24/2020 CS332 - Theory of Computation 27

Let 𝐿 be a regular language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑦| > 0

2. |𝑥𝑦| ≤ 𝑝

3. 𝑥𝑦𝑖𝑧 𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into three parts 𝑤 = 𝑥𝑦𝑧 where:

Pumping Lemma for context-free languages

9/24/2020 CS332 - Theory of Computation 28

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑣𝑦| > 0

2. |𝑣𝑥𝑦| ≤ 𝑝

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example:
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 0

Pumping Lemma for context-free languages

9/24/2020 CS332 - Theory of Computation 29

Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that

1. |𝑣𝑦| > 0

2. |𝑣𝑥𝑦| ≤ 𝑝

3. 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 𝐿 for all 𝑖 ≥ 0

For every 𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example:
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 010

Pumping Lemma as a game

9/24/2020 CS332 - Theory of Computation 30

1. YOU pick the language 𝐿 to be proved non context-free.

2. ADVERSARY picks a possible pumping length 𝑝.

3. YOU pick 𝑤 of length at least 𝑝.

4. ADVERSARY divides 𝑤 into 𝑢, 𝑣, 𝑥, 𝑦, 𝑧, obeying rules of the
Pumping Lemma: |𝑣𝑦| > 0 and |𝑣𝑥𝑦| ≤ 𝑝.

5. YOU win by finding 𝑖 ≥ 0, for which 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 is not in 𝐿.

If regardless of how the ADVERSARY plays this game, you
can always win, then 𝐿 is non context-free

Pumping Lemma example

9/24/2020 CS332 - Theory of Computation 31

Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

Pumping Lemma example

9/24/2020 CS332 - Theory of Computation 32

Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

Pumping Lemma example

9/24/2020 CS332 - Theory of Computation 33

Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

