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Context-Free Grammars
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Some History

An abstract model for two distinct problems

Rules for parsing natural languages
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Parsing an English sentence 
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Some History

An abstract model for two distinct problems

Specification of syntax and compilation for programming 
languages
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1977 ACM Turing Award citation
(John Backus)

For profound, influential, and lasting 
contributions to the design of practical high-
level programming systems, notably through 

his work on FORTRAN, and for seminal 
publication of formal procedures for the 
specification of programming languages.



Parsing a computer program
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Context-Free Grammar (Informal)

Example Grammar 𝐺

𝐴 → 0𝐴1
𝐴 → 𝐵
𝐵 → #

Derivation

𝐿(𝐺) =
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Context-Free Grammar (Informal)
Example Grammar 𝐺

𝐸 → 𝐸 + 𝑇
𝐸 → 𝑇
𝑇 → 𝑇 × 𝐹
𝑇 → 𝐹
𝐹 → (𝐸)
𝐹 → 𝑎
𝐹 → 𝑏

Derivation

𝐿(𝐺) =
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Socially Awkward Professor Grammar
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<PHRASE> → <START><END>

<PHRASE> → <FILLER><PHRASE>

<FILLER> → LIKE

<FILLER> → UMM

<START> → YOU KNOW

<END> → WHOOPS

<START> → ε

<END> → SORRY

<END> → $#@!



Socially Awkward Professor Grammar
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<PHRASE> → <FILLER><PHRASE> | <START><END>

<FILLER> → LIKE | UMM

<START> → YOU KNOW | ε

<END> → WHOOPS | SORRY | $#@!



Socially Awkward Professor Grammar
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<PHRASE> → <FILLER><PHRASE> | <START><END>

<FILLER> → LIKE | UMM

<START> → YOU KNOW | ε

<END> → WHOOPS | SORRY | $#@!

Is     “ YOU KNOW LIKE WHOOPS SORRY”   In the language of this grammar? 



Context-Free Grammar (Formal)

A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

• 𝑉 is a finite set of variables

• Σ is a finite set of terminal symbols (disjoint from 𝑉)

• 𝑅 is a finite set of production rules of the form 𝐴 → 𝑤, 
where 𝐴 ∈ 𝑉 and 𝑤 ∈ (𝑉 ∪ Σ)∗

• 𝑆 ∈ 𝑉 is the start variable

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆)

where 
Σ = 𝑎, 𝑏

𝑅 = {𝑆 → 𝑎𝑆𝑏, 𝑆 → 𝜀}
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Context-Free Grammar (Formal)
A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

𝑉 = variables      Σ = terminals        𝑅 = rules         𝑆 = start

• A  state is a sequence of variables and terminals

• We say that state 𝑎 derives state 𝑏 ( 𝑎 ⇒ 𝑏) if 𝑛 is obtained be applying a rule 
to one of the variables in 𝑎. 

eg, 𝑢𝐴𝑣 ⇒ 𝑢𝑤𝑣 (“𝑢𝐴𝑣 yields 𝑢𝑤𝑣”) if 𝐴 → 𝑤 is a rule of the grammar.

• We say a ⇒
∗ 𝑏 (“𝑎 derives 𝑏”) if a= 𝑏 or there exists a sequence such that a⇒

𝑎1 ⇒ 𝑎2 ⇒ ⋯ ⇒ 𝑏

• Language of the grammar: 𝐿 𝐺 = {𝑤 ∈ Σ∗|𝑆 ⇒
∗ 𝑤}

Example: 𝐺 = ({𝑆}, Σ, 𝑅, 𝑆) where 𝑅 = {𝑆 → 𝑢𝑆𝑣, 𝑆 → 𝜀}

𝐿 𝐺 = 𝑢𝑛𝑣𝑛 𝑛 ≥ 0}
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Context-Free Grammar (Formal)
A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

𝑉 = variables      Σ = terminals        𝑅 = rules         𝑆 = start
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• Language of the grammar: 𝐿 𝐺 = {𝑤 ∈ Σ∗|𝑆 ⇒
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Context-Free Grammar (Formal)
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Context-Free Grammar (Formal)
A CFG is a 4-tuple 𝐺 = 𝑉, Σ, 𝑅, 𝑆

𝑉 = variables      Σ = terminals        𝑅 = rules         𝑆 = start

• A  state is a sequence of variables and terminals

• We say that state 𝑎 derives state 𝑏 ( 𝑎 ⇒ 𝑏) if 𝑛 is obtained be applying a rule 
to one of the variables in 𝑎. 
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CFG Examples

Give context-free grammars for the following languages

1. The empty language

2. Strings of properly nested parentheses

3. Strings with equal # of 𝑎’s and 𝑏’s
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Context-Free Languages
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𝐿 is a context-free 
language if it is the 

language of some CFG

Questions about CFLs

1. Which languages are not
context-free?

2. How do we recognize 
whether 𝑤 ∈ 𝐿?

3. What are the closure 
properties of CFLs?



Pumping Lemma for context-free languages
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Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑣𝑦| > 0

2.  |𝑣𝑥𝑦| ≤ 𝑝

3.  𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:



Pumping Lemma example
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Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not context-free

Proof: Assume 𝐿 is context-free with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with     |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

Case 1: 𝑣, 𝑦 both contain only one kind of symbol

Case 2: Either 𝑣 or 𝑦 contains two kinds of symbols



Pumping Lemma example
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Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not context-free
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Pumping Lemma example
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Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not context-free

Proof: Assume 𝐿 is context-free with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with     |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…

Case 2: Either 𝑣 or 𝑦 contains two kinds of symbols



Pumping Lemma: Proof idea

Let 𝐿 be a context-free language. If 𝑤 ∈ 𝐿 is long enough, 
then every parse tree for 𝑤 has a repeated variable.
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Pumping Lemma Proof

What does “long enough” mean? (How do we choose the 
pumping length 𝑝?)

• Let 𝐺 be a CFG for 𝐿

• Suppose the right-hand side of every rule in 𝐺 uses at 
most 𝑏 symbols

• Let 𝑝 = 𝑏 𝑉 +1

Claim: If 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝, then the smallest parse tree 
for 𝑤 has height at least 𝑉 + 1

9/24/2020 CS332 - Theory of Computation 24



Pumping Lemma Proof

Claim: If 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝, then the smallest parse tree 
for 𝑤 has height at least 𝑉 + 1

• By the pigeonhole principle, there is a path down the parse tree 
with a repeated variable 𝑅

• Choose two such occurrences within the bottom 𝑉 + 1 levels
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Context-Free Languages
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𝐿 is a context-free 
language if it is the 

language of some CFG

Questions about CFLs

1. Which languages are not
context-free?

2. How do we recognize 
whether 𝑤 ∈ 𝐿?

3. What are the closure 
properties of CFLs?



Pumping Lemma for regular languages
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Let 𝐿 be a regular language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑦| > 0

2.  |𝑥𝑦| ≤ 𝑝

3.  𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into three parts 𝑤 = 𝑥𝑦𝑧 where:



Pumping Lemma for context-free languages
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Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑣𝑦| > 0

2.  |𝑣𝑥𝑦| ≤ 𝑝

3.  𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example: 
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 0



Pumping Lemma for context-free languages
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Let 𝐿 be a context-free language.

Then there exists a “pumping length” 𝑝 such that 

1.  |𝑣𝑦| > 0

2.  |𝑣𝑥𝑦| ≤ 𝑝

3.  𝑢𝑣𝑖𝑥𝑦𝑖𝑧  𝐿 for all 𝑖 ≥ 0

For every  𝑤 ∈ 𝐿 where |𝑤| ≥ 𝑝,
𝑤 can be split into five parts 𝑤 = 𝑢𝑣𝑥𝑦𝑧 where:

Example: 
𝐿 = 𝑤 ∈ 0, 1 ∗ 𝑤 = 𝑤𝑅

𝑤 = 010



Pumping Lemma as a game
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1. YOU pick the language 𝐿 to be proved non context-free.

2. ADVERSARY picks a possible pumping length 𝑝.

3. YOU pick 𝑤 of length at least 𝑝.

4. ADVERSARY divides 𝑤 into 𝑢, 𝑣, 𝑥, 𝑦, 𝑧, obeying rules of the 
Pumping Lemma:        |𝑣𝑦| > 0 and      |𝑣𝑥𝑦| ≤ 𝑝. 

5. YOU win by finding 𝑖 ≥ 0, for which 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 is not in 𝐿.

If regardless of how the ADVERSARY plays this game, you 
can always win, then 𝐿 is non context-free



Pumping Lemma example
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Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with     |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…



Pumping Lemma example

9/24/2020 CS332 - Theory of Computation 32

Claim: 𝐿 = 𝑎𝑛𝑏𝑛𝑐𝑛 𝑛 ≥ 0} is not regular

Proof: Assume 𝐿 is regular with pumping length 𝑝

1. Find 𝑤 ∈ 𝐿 with 𝑤 ≥ 𝑝
2. Show that 𝑤 cannot be pumped

If 𝑤 = 𝑢𝑣𝑥𝑦𝑧 with     |𝑣𝑦| > 0,|𝑣𝑥𝑦| ≤ 𝑝, then…



Pumping Lemma example

9/24/2020 CS332 - Theory of Computation 33
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