BU CS 332 - Theory of Computation

Lecture 6:

- More on pumping
- Regular expressions

Reading:
Sipser Ch 1.3

- Regular expressions = regular languages

Ran Canetti

September 22, 2020

Regular Expressions

Regular Expressions

- A different way of describing regular languages
- A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations
"Simple" languages: $\emptyset,\{\varepsilon\},\{a\}$ for some $a \in \Sigma$ Regular operations:
- Union: $A \cup B$
- Concatenation: $\underline{A \circ B}=\{a b \mid a \in A, b \in B\}$
- Star: $A^{*}=\left\{a_{1} a_{2} \ldots a_{n} \mid n \geq 0\right.$ and $\left.a_{i} \in A\right\}$

Regular Expressions - Syntax
A regular expression R is defined recursively using the following rules:

1. ε, \emptyset, and a are regular expressions for every $a \in \Sigma$
$=-$
2. If R_{1} and R_{2} are regular expressions, then so are $\left(R_{1} \cup R_{2}\right),\left(R_{1} \circ R_{2}\right)$, and $\left(R_{1}^{*}\right)$

Examples: (over $\Sigma=\{\underline{a}, b, c\}$)
$(a \circ b) \quad\left(\left(\left(\left(a \circ\left(b^{*}\right)\right) \circ c\right) \cup\left(\left(\left(a^{*}\right) \circ b\right)\right)^{*}\right)\right)$

Regular Expressions - Semantics

$L(R)=$ the language a regular expression describes

1. $L(\emptyset)=\emptyset$
2. $L(\varepsilon)=\{\varepsilon\}$
3. $L(a)=\{a\}$ for every $a \in \Sigma$
4. $L\left(\left(R_{1} \cup R_{2}\right)\right)=L\left(R_{1}\right) \cup L\left(R_{2}\right)$
5. $L\left(\left(R_{1} \circ R_{2}\right)\right)=L\left(R_{1}\right) \circ L\left(R_{2}\right)$
6. $L\left(\left(R_{1}^{*}\right)\right)=\left(L\left(R_{1}\right)\right)^{*}$

Example: $L\left(\left(\left(a^{*}\right) \circ\left(b^{*}\right)\right)\right)=$

Simplifying Notation

- Omit \circ symbol: $(a b)=(a \circ b)$
- Omit many parentheses, since union and concatenation are associative:

$$
(a \cup b \cup c)=(a \cup(b \cup c))=((a \cup b) \cup c)
$$

- Order of operations: Evaluate star, then concatenation, then union

$$
a \underline{b^{*}} \cup c=\left(a\left(b^{*}\right)\right) \cup c
$$

Examples
Let $\Sigma=\{0,1\}$

1. $\{w \mid w$ contains exactly one 1$\}$
$0^{* 1} 10^{*}$

Examples
Let $\Sigma=\{0,1\}$

1. $\{w \mid w$ contains exactly one 1$\}$
2. $\{w \mid w$ contains the string 011 at least twice $\}$

$$
\left.(0 \cdot 1)^{\#} 0 \|(0,1)\right)^{*}(0,01)^{2}
$$

Examples
Let $\Sigma=\{0,1\}$

1. $\{w \mid w$ contains exactly one 1$\}$
2. $\{w \mid w$ contains the string 011 at least twice $\}$
3. $\{w \mid w$ has length at least 3 and its third symbol is 0$\}$

$$
(0+1) \cdot(0.1) \cdot 0 \cdot(0.1)^{*}
$$

Examples
Let $\Sigma=\{0,1\}$

1. $\{w \mid w$ contains exactly one 1$\}$
2. $\{w \mid w$ contains the string 011 at least twice $\}$
3. $\{w \mid w$ has length at least 3 and its third symbol is 0$\}$
4. $\{w$ every odd position of w is 1$\}$

$$
(1 \cdot(0 \cdot 1))^{*}
$$

Additional notation

- For alphabet Σ, the regex Σ represents $L(\Sigma)=\Sigma$
- For regex R, the regex $R^{+}=R R^{*}$.

$$
R^{*}=\left\{\varepsilon, \mathbb{R}^{\star}\right\}
$$

Equivalence of Regular Expressions, NFAs, and DFAs

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: For any regular expression $R, L(R)$ is regular.

Theorem 2: For any regular language L, there is a regular expression R such that $L=L(R)$.

Regular expression -> NFA
Theorem 1: For any regular expression $R, L(R)$ is regular.

Proof: Induction on size of R.

Base cases:

$$
\begin{aligned}
& R=\emptyset \\
& R=\underline{\varnothing} \\
& R=a
\end{aligned}
$$

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Inductive step:

$$
\begin{aligned}
& R=\left(R_{1} \cup R_{2}\right) \\
& R=\left(R_{1} R_{2}\right) \\
& R=\left(R_{1}^{*}\right)
\end{aligned}
$$

NFA -> Regular expression
Theorem 2: For any regular language L, there is a regular expression R such that $L=L(R)$.

Proof idea:
Start from an NFA M for L. Simplify the NFA by "ripping out" states one at a time and replacing them with regexes

Hybrid NFAs

- Every transition is labeled by a regex
- - One start state with only outgoing transitions
- - Only one accept state with only incoming transitions
- Start state and accept state are distinct

Hybrid NFA Example

NFA -> Regular expression

NFA -> HNFA

- Add a new start state with no incoming arrows.
- Make a unique accept state with no outgoing arrows.

HNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

HNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

