
BU CS 332 – Theory of Computation

Lecture 6:

• More on pumping

• Regular expressions

• Regular expressions =
regular languages

Reading:

Sipser Ch 1.3

Ran Canetti

September 22, 2020

ran

ran

Regular Expressions

9/20/2020 CS332 - Theory of Computation 2

Regular Expressions

• A different way of describing regular languages

• A regular expression expresses a (possibly complex)
language by combining simple languages using the
regular operations

“Simple” languages: ∅, 𝜀 , {𝑎} for some 𝑎 ∈ Σ

Regular operations:

Union: 𝐴 ∪ 𝐵

Concatenation: 𝐴 ∘ 𝐵 = 𝑎𝑏 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

Star: 𝐴∗ = { 𝑎1𝑎2…𝑎𝑛|𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴}

9/20/2020 CS332 - Theory of Computation 3

ran

Regular Expressions – Syntax

A regular expression 𝑅 is defined recursively using the
following rules:

1. 𝜀, ∅, and 𝑎 are regular expressions for every 𝑎 ∈ Σ

2. If 𝑅1 and 𝑅2 are regular expressions, then so are

(𝑅1∪ 𝑅2), (𝑅1∘ 𝑅2), and (𝑅1
∗)

Examples: (over Σ = {𝑎, 𝑏, 𝑐})
𝑎 ∘ 𝑏 ((((𝑎 ∘ (𝑏∗)) ∘ 𝑐) ∪ (((𝑎∗) ∘ 𝑏))∗)) (∅∗)

9/20/2020 CS332 - Theory of Computation 4

ran

Regular Expressions – Semantics

𝐿(𝑅) = the language a regular expression describes

1. 𝐿(∅) = ∅

2. 𝐿 𝜀 = 𝜀

3. 𝐿(𝑎) = {𝑎} for every 𝑎 ∈ Σ

4. 𝐿((𝑅1∪ 𝑅2)) = 𝐿(𝑅1) ∪ 𝐿(𝑅2)

5. 𝐿((𝑅1∘ 𝑅2)) = 𝐿(𝑅1) ∘ 𝐿(𝑅2)

6. 𝐿 𝑅1
∗ = (𝐿 𝑅1)∗

Example: 𝐿(((𝑎∗) ∘ (𝑏∗))) =

9/20/2020 CS332 - Theory of Computation 5

ran

Simplifying Notation

• Omit ∘ symbol: 𝑎𝑏 = 𝑎 ∘ 𝑏

• Omit many parentheses, since union and concatenation
are associative:

𝑎 ∪ 𝑏 ∪ 𝑐 = 𝑎 ∪ (𝑏 ∪ 𝑐) = (𝑎 ∪ 𝑏) ∪ 𝑐

• Order of operations: Evaluate star, then concatenation,
then union

𝑎𝑏∗ ∪ 𝑐 = (𝑎 𝑏∗) ∪ 𝑐

9/20/2020 CS332 - Theory of Computation 6

ran

Examples
Let Σ = {0, 1}

1. 𝑤 𝑤 contains exactly one 1}

9/22/2020 CS332 - Theory of Computation 7

ran

Examples
Let Σ = {0, 1}

1. 𝑤 𝑤 contains exactly one 1}

2. 𝑤 𝑤 contains the string 011 at least twice }

9/22/2020 CS332 - Theory of Computation 8

ran

Examples
Let Σ = {0, 1}

1. 𝑤 𝑤 contains exactly one 1}

2. 𝑤 𝑤 contains the string 011 at least twice }

3. 𝑤 𝑤 has length at least 3 and its third symbol is 0}

9/22/2020 CS332 - Theory of Computation 9

ran

Examples
Let Σ = {0, 1}

1. 𝑤 𝑤 contains exactly one 1}

2. 𝑤 𝑤 contains the string 011 at least twice }

3. 𝑤 𝑤 has length at least 3 and its third symbol is 0}

4. 𝑤 every odd position of 𝑤 is 1}

9/22/2020 CS332 - Theory of Computation 10

ran

Additional notation

• For alphabet Σ, the regex Σ represents 𝐿(Σ) = Σ

• For regex 𝑅, the regex 𝑅+ = 𝑅𝑅∗

9/20/2020 CS332 - Theory of Computation 11

ran

Equivalence of Regular
Expressions, NFAs, and DFAs

9/20/2020 CS332 - Theory of Computation 12

Regular Expressions Describe Regular Languages

Theorem: A language 𝐴 is regular if and only if it is
described by a regular expression

Theorem 1: For any regular expression R, L(R) is regular.

Theorem 2: For any regular language L, there is a regular
expression R such that L=L(R).

9/20/2020 CS332 - Theory of Computation 13

ran

Regular expression -> NFA

Theorem 1: For any regular expression R, L(R) is regular.

Proof: Induction on size of R.

Base cases:

𝑅 = ∅

𝑅 = 𝜀

𝑅 = 𝑎

9/22/2020 CS332 - Theory of Computation 14

ran

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step:

𝑅 = (𝑅1∪ 𝑅2)

𝑅 = (𝑅1𝑅2)

𝑅 = 𝑅1
∗

9/20/2020 CS332 - Theory of Computation 15

ran

NFA -> Regular expression

Theorem 2: For any regular language L, there is a regular
expression R such that L=L(R).

Proof idea:

Start from an NFA M for L. Simplify the NFA by “ripping
out” states one at a time and replacing them with regexes

9/22/2020 CS332 - Theory of Computation 17

0

1

0

ran

Hybrid NFAs

• Every transition is labeled by a regex

• One start state with only outgoing transitions

• Only one accept state with only incoming transitions

• Start state and accept state are distinct

9/20/2020 CS332 - Theory of Computation 18

ran

Hybrid NFA Example

9/20/2020 CS332 - Theory of Computation 19

𝑅(𝑞𝑠, 𝑞) =

𝑅(𝑞, 𝑞𝑎) =

𝑅(𝑞, 𝑞𝑠) =

𝑞
𝑎∗𝑏

𝑞𝑠 𝑞𝑎

𝑎 ∪ 𝑏

𝑎

ran

NFA -> Regular expression

9/20/2020 CS332 - Theory of Computation 20

NFA HNFA

HNFA

HNFA

Regex

𝑘 states

𝑘 + 2 states
(add qs and qa)

𝑘 + 1 states

2 states

…

ran

NFA -> HNFA

9/20/2020 CS332 - Theory of Computation 21

NFAε

ε

ε

ε

• Add a new start state with no incoming arrows.
• Make a unique accept state with no outgoing arrows.

ran

HNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

9/20/2020 CS332 - Theory of Computation 22

𝑎∗𝑏
𝑞1 𝑞3

𝑎
𝑞2

𝑞1 𝑞3

ran

ran

HNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

9/20/2020 CS332 - Theory of Computation 23

𝑎∗𝑏
𝑞1 𝑞3

𝑎
𝑞2

𝑎 ∪ 𝑏

𝑞1 𝑞3

ran

ran

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

9/20/2020 CS332 - Theory of Computation 24

𝑎∗𝑏
𝑞1 𝑞3

𝑎
𝑞2

𝑏

𝑞1 𝑞3

ran

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

9/20/2020 CS332 - Theory of Computation 25

𝑞1 𝑞3𝑞2
𝑅1

𝑅2

𝑅3

𝑅4

𝑞1 𝑞3

ran

Example

9/20/2020 CS332 - Theory of Computation 26

𝑎

𝑎

1 2

3

𝑏

𝑏
𝑎

ran

9/20/2020 CS332 - Theory of Computation 27

9/20/2020 CS332 - Theory of Computation 28

9/20/2020 CS332 - Theory of Computation 29

9/20/2020 CS332 - Theory of Computation 30

