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\Lecture 6:

* More on pumping Reading:
* Regular expressions Sipser Ch 1.3
* Regular expressions =
regular languages /
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Regular Expressions
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Regular Expressions

A different way of describing regular languages

* A regular expression expresses a (possibly complex)
language by combining simple languages using the
regular operations

“Simple” languages: @, {¢}, {a} forsome a € X

“‘

Regular operations:
-« Union:A UB
* Concatenation: A o B ={ab |a € A,b € B}

° Star: A* = {agaz...anln > 0anda; € A}
=+ M
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Regular Expressions — Syntax

A regular expression R is defined recursively using the
following rules:

—_—

1. &, @, and a are regular expressions for every a € X

2. If @; and R, are regular expressions, then so are
(R1U Rza)\f (Rli R;),and (Ry)

Examples: (over £ = {a, b, c})

(aeb)  ((((ae () °c)u(((@)eb))?) @)
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Regular Expressions — Semantics

L(R) = the language a regular expression describes
—

L(D) =
L(¢) = {&}

L(a) = {a}foreverya € X
L((R1U R;)) = L(Ry) U L(R3)
L((Ry°Ry)) =L(Ry) 2 L(R3)
L((R) = (L(RY)®

9
te

O U1 W

Example: L(((a) o (b)) = W
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Simplitying Notation

* Omit o symbol: (ab) = (a o b)

* Omit many parentheses, since union and concatenation
are associative:

(@bUc)=(au(buC))=((aub)Uc)

\___c,—_/‘

* Order of operations: Evaluate star, then concatenation,
then union

ab* U c = (a(b®))Uc
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Examples

Let T = {0, 1)
1. {w |w contains exactly one 1}
o'1 o™
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Examples
Let £ = {0, 1}

1. {w |w contains exactly one 1}

2. {w |w contains the string 011 at least twice }

==
@\”Oﬁ o1 (4 00‘%0 QVD\
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Examples
Let £ = {0, 1}

1. {w |w contains exactly one 1}
2. {w |w contains the string 011 at least twice }

3. {w |w haslength at least 3 and its third symbol is 0}
ok
(@ v()eCov (’)GQ . (o“ﬂ


ran


Examples
Let £ = {0, 1}

1. {w |w contains exactly one 1}
2. {w |w contains the string 011 at least twice }
3. {w |w haslength at least 3 and its third symbol is 0}

4. {w |every odd position of wis 1}

(L0 D))"

_>/


ran


Additional notation (ov1) s
REIE

* For alphabet %, the regex X represents L(X) = X

* For regex R, the regex R. = RR"*

&-Te &S
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Equivalence of Regular
Expressions, NFAs, and DFAs
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Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is
[described by a regular expression
v

Theorem 1: For any regular expression R, L(R) is regular.

= =

Theorem 2: For any regular language L, there is a regular
expression R such that L=L(R).
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Regular expression -> NFA

Theorem 1: For any regular expression R, L(R) is regular.

Proof: Induction on size of R.

Base cases:
R =0
R =¢
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Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step:
R = (R{URy)

'R = (R1R3)
‘R =(Ry)
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NFA -> Regular expression

Theorem 2: For any regular language L, there is a regular
expression R such that L=L(R).

Proof idea:

Start from an NFA M for L. Simplify the NFA by “ripping
out” states one at a time and replacing them with regexes

H
© | = 01 O
|2 B
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Hybrid NFAs

* Every transition is labeled by a regex

¢ * One start state with only outgoing transitions

v *» Only one accept state with only incoming transitions
 Start state and accept state are distinct


ran


Hybrid NFA Example

_.‘@.‘ss.

R(qs ) - G\
R(q,q,) =
R(q,qs) = %’5


ran


NFA -> Regular expression

k states
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k + 2 states
(add g, and q,)

k + 1 states

2 states

20


ran


NFA -> HNFA

£
a\‘
~/V
Q
1 1Y

 Add a new start state with no incoming arrows.
* Make a unique accept state with no outgoing arrows.



ran


HNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state !
‘ a
— “ -t
——
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HNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one

out and relabel the arrows with regexes to account for the

missing state



ran
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GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state



ran


GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state ; 2

R,



ran




ran
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