BU CS 332 – Theory of Computation

Lecture 6:

- More on pumping
- Regular expressions
- Regular expressions = regular languages

Ran Canetti

September 22, 2020

Reading: Sipser Ch 1.3

Regular Expressions

Regular Expressions

- A different way of describing regular languages
- A regular expression expresses a (possibly complex) language by combining simple languages using the regular operations

"Simple" languages: $\emptyset, \{\varepsilon\}, \{a\}$ for some $a \in \Sigma$ Regular operations:

Union:
$$A \cup B$$

Concatenation: $A \circ B = \{ab \mid a \in A, b \in B\}$
Star: $A^* = \{a_1a_2...a_n \mid n \ge 0 \text{ and } a_i \in A\}$

Regular Expressions – Syntax

A regular expression *R* is defined recursively using the following rules:

- 1. ε, \emptyset , and a are regular expressions for every $a \in \Sigma$
- 2. If R_1 and R_2 are regular expressions, then so are $(R_1 \cup R_2), (R_1 \circ R_2), \text{ and } (R_1^*)$

Examples: (over $\Sigma = \{\underline{a}, \underline{b}, \underline{c}\}$) ($(((a \circ (b^*)) \circ c) \cup (((a^*) \circ b))^*)$)

Regular Expressions – Semantics

L(R) = the language a regular expression describes

1.
$$L(\emptyset) = \underline{\emptyset}$$

2.
$$L(\varepsilon) = \{\varepsilon\}$$

3.
$$L(a) = \{a\}$$
 for every $a \in \Sigma$

- 4. $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
- 5. $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
- 6. $L((R_1^*)) = (L(R_1))^*$

Example: $L(((a^*) \circ (b^*))) =$

Simplifying Notation

- Omit symbol: $(ab) = (a \circ b)$
- Omit many parentheses, since union and concatenation are associative:

 $(\underbrace{a \cup b \cup c}_{\smile}) = (a \cup (b \cup c)) = ((a \cup b) \cup c)$

• Order of operations: Evaluate star, then concatenation, then union

 $a\underline{b}^* \cup c = (a(b^*)) \cup c$

1. { $w \mid w$ contains exactly one 1}

1. { $w \mid w$ contains exactly one 1}

2. { $w \mid w \text{ contains the string 011 at least twice }$

1. { $w \mid w$ contains exactly one 1}

2. {w | w contains the string 011 at least twice }

3. {w |w has length at least 3 and its third symbol is 0} $(\bigcirc \lor () \circ (\circ \lor) \circ \bigcirc \circ (\circ \lor)^*$

1. { $w \mid w$ contains exactly one 1}

2. {w | w contains the string 011 at least twice }

3. $\{w \mid w \text{ has length at least 3 and its third symbol is 0}\}$

4. {w | every odd position of w is 1} $(1 \cdot (0 \cdot i))^*$

9/22/2020

Additional notation

- For alphabet Σ , the regex Σ represents $L(\Sigma) = \Sigma$
- For regex R, the regex $R^+_{\perp} = RR^*_{\perp}$

 $(0 \cdot 1)$

2

20,13

Equivalence of Regular Expressions, NFAs, and DFAs Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is described by a regular expression

Theorem 1: For any regular expression R, L(R) is regular.

Theorem 2: For any regular language L, there is a regular expression R such that L=L(R).

Regular expression -> NFA

Theorem 1: For any regular expression R, L(R) is regular.

Proof: Induction on size of R.

Base cases: $R = \emptyset$ $R = \varepsilon$ R = a

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA Proof: Induction on size of a regex

Inductive step:

$$R = (R_1 \cup R_2)$$

$$R = (R_1 R_2)$$

$$R = (R_1^*)$$

NFA -> Regular expression

Theorem 2: For any regular language L, there is a regular expression R such that L=L(R).

Proof idea:

Start from an NFA M for L. Simplify the NFA by "ripping out" states one at a time and replacing them with regexes

Hybrid NFAs

- Every transition is labeled by a regex
- • One start state with only outgoing transitions
- Only one accept state with only incoming transitions
 - Start state and accept state are distinct

Hybrid NFA Example

NFA -> Regular expression

- Add a new start state with no incoming arrows.
- Make a unique accept state with no outgoing arrows.

HNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

 a^*b a

HNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state $a \cup b$

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state

GNFA -> Regular expression

Idea: While the machine has more than 2 states, rip one out and relabel the arrows with regexes to account for the missing state R_2

 R_1

 q_2

 R_4

 q_1

KRiks URy

 q_3

 q_3

