BU CS 332 — Theory of Computation

\Lecture 6:

* More on pumping Reading:
* Regular expressions Sipser Ch 1.3
* Regular expressions =
regular languages /

Ran Canetti
September 22, 2020

ran

ran

Regular Expressions

9/20/2020 (CS332 - Theory of Computation

Regular Expressions

A different way of describing regular languages

* A regular expression expresses a (possibly complex)
language by combining simple languages using the
regular operations

“Simple” languages: @, {¢}, {a} forsome a € X

“‘

Regular operations:
-« Union:A UB
* Concatenation: A o B ={ab |a € A,b € B}

° Star: A* = {agaz...anln > 0anda; € A}
=+ M

ran

Regular Expressions — Syntax

A regular expression R is defined recursively using the
following rules:

—_—

1. &, @, and a are regular expressions for every a € X

2. If @; and R, are regular expressions, then so are
(R1U Rza)\f (Rli R;),and (Ry)

Examples: (over £ = {a, b, c})

(aeb) ((((ae () °c)u(((@)eb))?) @)

9/20/2020 CS332 - Theory of Computation 4

ran

Regular Expressions — Semantics

L(R) = the language a regular expression describes
—

L(D) =
L(¢) = {&}

L(a) = {a}foreverya € X
L((R1U R;)) = L(Ry) U L(R3)
L((Ry°Ry)) =L(Ry) 2 L(R3)
L((R) = (L(RY)®

9
te

O U1 W

Example: L(((a) o (b)) = W

9/20/2020 CS332 - Theory of Computation

ran

Simplitying Notation

* Omit o symbol: (ab) = (a o b)

* Omit many parentheses, since union and concatenation
are associative:

(@bUc)=(au(buC))=((aub)Uc)

___c,—_/‘

* Order of operations: Evaluate star, then concatenation,
then union

ab* U c = (a(b®))Uc

9/20/2020 CS332 - Theory of Computation 6

ran

Examples

Let T = {0, 1)
1. {w |w contains exactly one 1}
o'1 o™

9/22/2020 CS332 - Theory of Computation

ran

Examples
Let £ = {0, 1}

1. {w |w contains exactly one 1}

2. {w |w contains the string 011 at least twice }

==
@\”Oﬁ o1 (4 00‘%0 QVD\

9/22/2020 CS332 - Theory of Computation

ran

Examples
Let £ = {0, 1}

1. {w |w contains exactly one 1}
2. {w |w contains the string 011 at least twice }

3. {w |w haslength at least 3 and its third symbol is 0}
ok
(@ v()eCov (’)GQ . (o“ﬂ

ran

Examples
Let £ = {0, 1}

1. {w |w contains exactly one 1}
2. {w |w contains the string 011 at least twice }
3. {w |w haslength at least 3 and its third symbol is 0}

4. {w |every odd position of wis 1}

(L0 D))"

_>/

ran

Additional notation (ov1) s
REIE

* For alphabet %, the regex X represents L(X) = X

* For regex R, the regex R. = RR"*

&-Te &S

9/20/2020 CS332 - Theory of Computation 11

ran

Equivalence of Regular
Expressions, NFAs, and DFAs

9/20/2020 (CS332 - Theory o f Computation

Regular Expressions Describe Regular Languages

Theorem: A language A is regular if and only if it is
[described by a regular expression
v

Theorem 1: For any regular expression R, L(R) is regular.

= =

Theorem 2: For any regular language L, there is a regular
expression R such that L=L(R).

9/20/2020 CS332 - Theory of Computation 13

ran

Regular expression -> NFA

Theorem 1: For any regular expression R, L(R) is regular.

Proof: Induction on size of R.

Base cases:
R =0
R =¢

9/22/2020

CS332 - Theory of Computation

14

ran

Regular expression -> NFA

Theorem 1: Every regex has an equivalent NFA

Proof: Induction on size of a regex

Inductive step:
R = (R{URy)

'R = (R1R3)
‘R =(Ry)

9/20/2020

CS332 - Theory of Computation

15

ran

NFA -> Regular expression

Theorem 2: For any regular language L, there is a regular
expression R such that L=L(R).

Proof idea:

Start from an NFA M for L. Simplify the NFA by “ripping
out” states one at a time and replacing them with regexes

H
© | = 01 O
|2 B

9/22/2020 CS332 - Theory of Computation 17

ran

Hybrid NFAs

* Every transition is labeled by a regex

¢ * One start state with only outgoing transitions

v *» Only one accept state with only incoming transitions
 Start state and accept state are distinct

ran

Hybrid NFA Example

_.‘@.‘ss.

R(qs) - G\
R(q,q,) =
R(q,qs) = %’5

ran

NFA -> Regular expression

k states

9/20/2020

I

Regex

CS332 - Theory of Computation

k + 2 states
(add g, and q,)

k + 1 states

2 states

20

ran

NFA -> HNFA

£
a\‘
~/V
Q
1 1Y

 Add a new start state with no incoming arrows.
* Make a unique accept state with no outgoing arrows.

ran

HNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state !
‘ a
— “ -t
——

ran

ran

HNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one

out and relabel the arrows with regexes to account for the

missing state

ran

ran

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the
missing state

ran

GNFA -> Regular expression

ldea: While the machine has more than 2 states, rip one
out and relabel the arrows with regexes to account for the

missing state ; 2

R,

ran

ran

9/20/2020

CS332 - Theory of Computation

27

9/20/2020

CS332 - Theory of Computation

28

9/20/2020

CS332 - Theory of Computation

29

9/20/2020

CS332 - Theory of Computation

30

