BU CS 332 – Theory of Computation

Lecture 4:

- Non-regular languages
- Pumping Lemma

Reading:

Sipser Ch 1.4

Ran Canetti September 15, 2020

Recall: Operations on languages

Let $A, B \subseteq \Sigma^*$ be languages. Define

Regular Operations Concatenation: $A \cup B = \{ab \mid a \in A, b \in B\}$ Star: $A^* = \{a_1a_2...a_n \mid n \geq 0 \text{ and } a_i \in A\}$

 \searrow Complement: $ar{A}$

 \checkmark Intersection: $A \cap B$

ightharpoonup Reverse: $A^R = \{ a_1 a_2 ... a_n | a_n ... a_1 \in A \}$

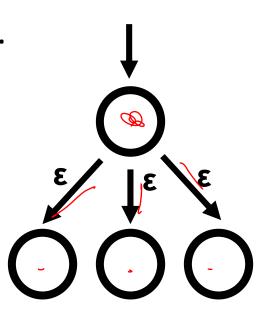
Theorem: The class of regular languages is closed under all six of these operations

Closure under Reverse

Theorem. The reverse of a regular language is also regular

Proof: Let L be a regular language and M be a DFA recognizing it. Construct an NFA M' recognizing L^R :

- Define M' as M with the arrows reversed.
- Make the start state of M be the accept state in M'.
- Make a new start state that goes to all accept states of M by ε -transitions.



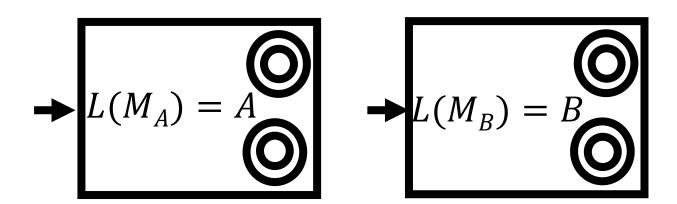
Closure under Concatenation

Concatenation: $A \circ B = \{ ab \mid a \in A \text{ and } b \in B \}$

Theorem. If A and B are regular, $A \circ B$ is also regular.

Proof: Given DFAs M_A and M_B , construct NFA by

- Connecting all accept states in M_A to the start state in M_B .
- Make all states in M_A non-accepting.



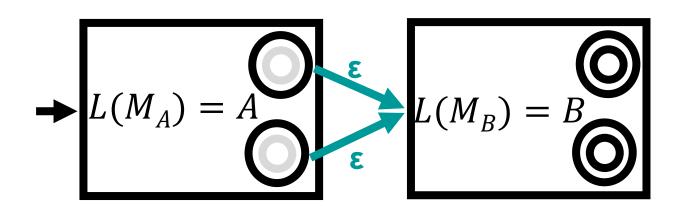
Closure under Concatenation

Concatenation: $A \circ B = \{ ab \mid a \in A \text{ and } b \in B \}$

Theorem. If A and B are regular, $A \circ B$ is also regular.

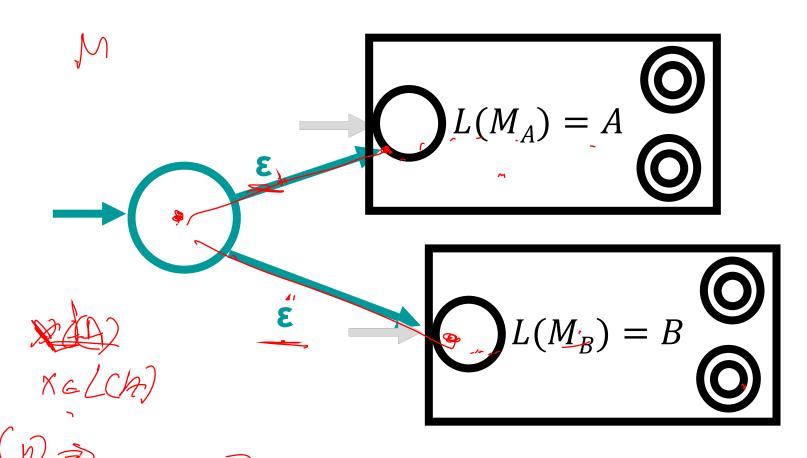
Proof: Given DFAs M_A and M_B , construct NFA by

- Connecting all accept states in M_A to the start state in M_B .
- Make all states in M_A non-accepting.



A Mystery Construction

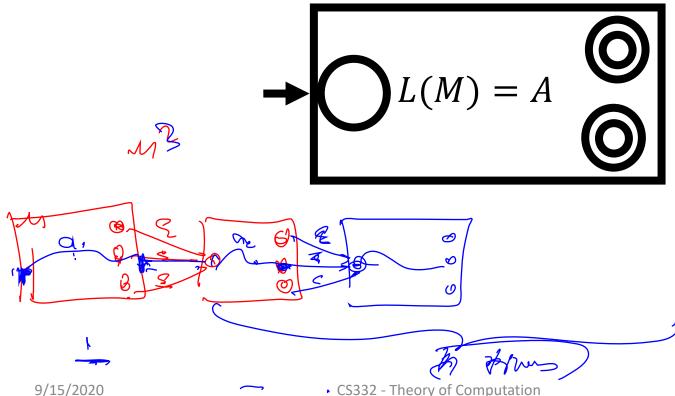
Given DFAs M_A recognizing A and M_B recognizing B, what does the following NFA recognize?



Closure under n-times concatenation

n-times:
$$\underline{A}^n = \{ a_1 a_2 ... a_n \mid \text{ and } a_i \in \underline{A} \}$$

Theorem. If A is regular, A^n is also regular.



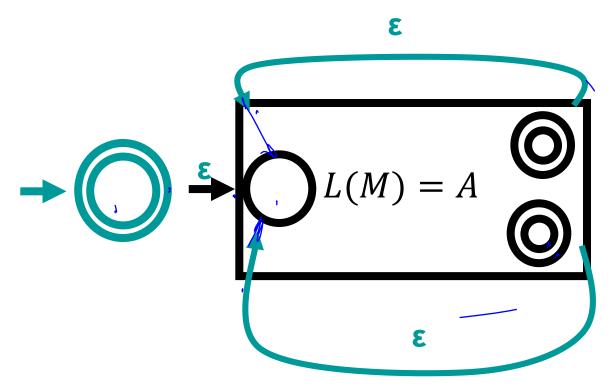
Closure under Star

Star: $A^* = \bigcup_{n>0} \{A^n\}$



Closure under Star

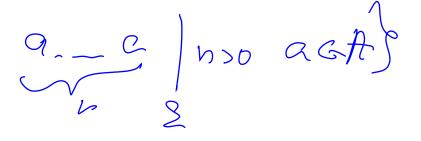
Theorem. If A is regular, A^* is also regular.

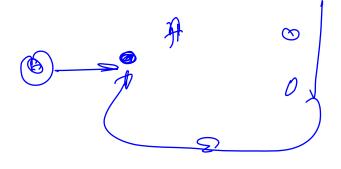


Closure under strict n-times concatenation

$$\text{n-times:} \{ \tilde{A}^n = \{ \underbrace{a \quad a \quad ... a}_{n \text{ times}} \mid \text{and } a \in A \}$$

Is $ilde{A}^*$ regular?



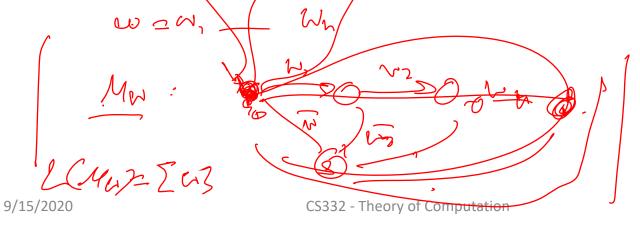


 Q_1, Q_2

Continuing the exploration

 We've seen techniques for showing that languages are regular

Could it be the case that every language is regular?



Regular?

Construct an NFA for the following languages

$$\{0^{n}1^{n} \mid 0 < n \leq 2\}$$

$$\{0^n 1^n \mid 0 < n \le k\}$$

•
$$\{0^n 1^n \mid n > 0\}$$

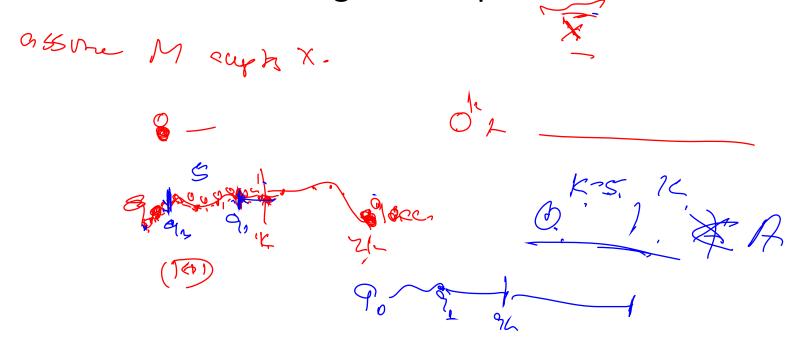
Proving a language is not regular

Theorem: $A = \{0^n 1^n \mid n > 0\}$ is not regular

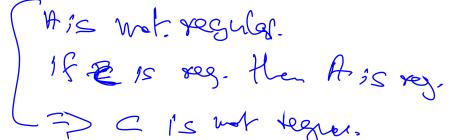
Proof: (by contradiction)

Let M be a DFA with k states recognizing A

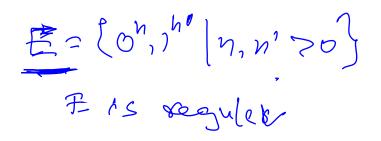
Consider running M on input 0^k1^k

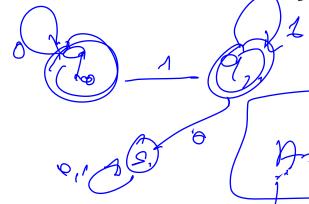


Regular or not?



 $C = \{ w \mid w \text{ has equal number of 1s and 0s} \}$





 $D = \{ w \mid w \text{ has equal number of } 10s \text{ and } 01s \} \}$

The Pumping Lemma

A systematic way to prove that a language is not regular

Why do we teach this?

- Demonstrates how can prove negative results on the power of computers (computational models)
- Proof illuminates essential structure of finite automata
- Generalizes to other models of computation / classes of languages (CFLs, self-assembly)
- Applying it can be fun!

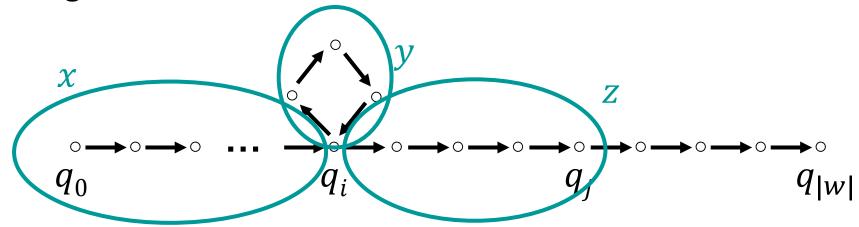
Intuition for the Pumping Lemma

Imagine a **DFA** with p states that recognizes strings of length > p

Idea: If you can go around the cycle once, you can go around 0 or 2,3,4... times

Pumping Lemma (Informal)

Let L be a regular language. Let w be a "long enough" string in L.



Then we can write w = xyz such that $xy^iz \in L$ for every $i \ge 0$.

$$i = 0$$
:

$$i = 2$$
:

$$i = 1$$
:

$$i = 3$$
:

Pumping Lemma (Formal)

Let L be a regular language.

Then there exists a "pumping length" p such that

For every $w \in L$ where $|w| \ge p$, w can be split into three parts w = xyz where:

1. |y| > 0

- $2. |xy| \leq p$
- 3. $xy^iz \in L$ for all $i \geq 0$

Example:

```
Let L = \{w \mid \text{all } a \text{'s in } w \text{ appear } b \text{efore all } b \text{'s} \}; p = 1
```

Using the Pumping Lemma

Theorem: $A = \{0^n 1^n \mid n > 0\}$ is not regular

Proof: (by contradiction)

Assume instead that A is regular. Then A has a pumping length p.

What happens if we try to pump 0^p1^p ?

If A is regular, w can be split into w = xyz, where

1.
$$|y| > 0$$

$$2. |xy| \leq p$$

3.
$$xy^iz \in A$$
 for all $i \geq 0$

General Strategy for proving L is not regular

Proof by contradiction: assume L is regular. Then there is a pumping length p.

Pumping Lemma as a game

- 1. YOU pick the language L to be proved nonregular.
- 2. ADVERSARY picks a possible pumping length p.
- 3. YOU pick w of length at least p.
- 4. ADVERSARY divides w into x, y, z, obeying rules of the Pumping Lemma: |y| > 0 and $|xy| \le p$.
- 5. YOU win by finding $i \ge 0$, for which $xy^i z$ is not in L.

If regardless of how the ADVERSARY plays this game, you can always win, then L is nonregular

Example: Palindromes

Claim: $L = \{ww^R \mid w \in \{0,1\}^*\}$ is not regular

- 1. Find $w \in L$ with |w| > p
- 2. Show that w cannot be pumped Intuitively

Example: Palindromes

Claim: $L = \{ww^R \mid w \in \{0,1\}^*\}$ is not regular

- 1. Find $w \in L$ with |w| > p
- 2. Show that w cannot be pumped Formally If w = xyz with $|xy| \le p$, then...

Now you try!

Claim: $L = \{0^i 1^j | i > j \ge 0\}$ is not regular

- 1. Find $w \in L$ with |w| > p
- 2. Show that w cannot be pumped Intuitively

Now you try!

Claim: $L = \{0^i 1^j | i > j \ge 0\}$ is not regular

- 1. Find $w \in L$ with |w| > p
- 2. Show that w cannot be pumped Formally If w = xyz with $|xy| \le p$, then...

Choosing wisely

Claim: $BALANCED = \{w \mid w \text{ has an equal } \# \text{ of } 0\text{s and } 1\text{s} \}$ is not regular

Proof: Assume L is regular with pumping length p

- 1. Find $w \in L$ with |w| > p
- 2. Show that w cannot be pumped Formally If w = xyz with $|xy| \le p$, then...

Reusing a Proof

Pumping a language can be lots of work...

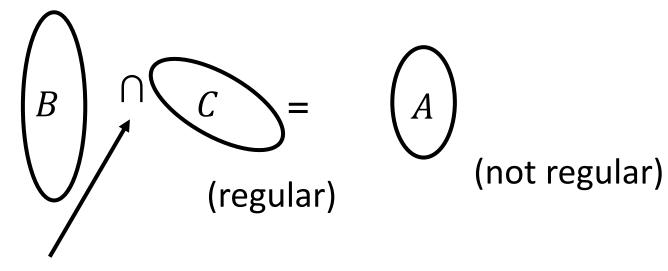
Let's try to reuse that work!

How else might we show that BALANCED is regular?

 $\{0^n1^n \mid n \geq 0\} = BALANCED \cap \{w \mid \text{all 0s in } w \text{ appear before all 1s}\}$

Using Closure Properties

If A is not regular, we can show a related language B is not regular



any of $\{\circ, \cup, \cap\}$ or, for one language, $\{\neg, R, *\}$

By contradiction: If B is regular, then $B \cap C (= A)$ is regular. But A is not regular so neither is B!

Example

```
Prove B = \{0^i 1^j | i \neq j\} is not regular using nonregular language A = \{0^n 1^n | n \geq 0\} and regular language C = \{w \mid \text{all 0s in } w \text{ appear before all 1s}\}
```