BU CS 332 – Theory of Computation

Lecture 3:

- Equivalence of NFAs and DFAs
- Closure under regular operations

Reading: Sipser Ch 1.1-1.2

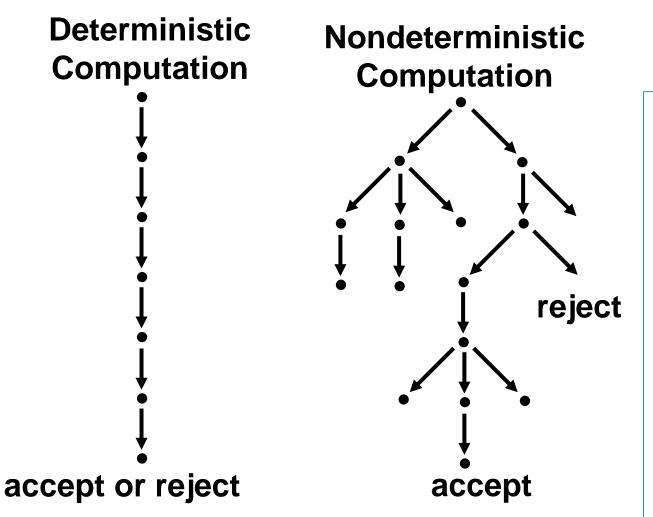
Ran Canetti September 10, 2020 Formal Definition of a NFA

An NFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- *Q* is the set of states
- Σ is the alphabet
- $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

M accepts a string *w* if there exists a path from q_0 to an accept state that can be followed by reading *w*.

DFAs vs. NFAs



Ways to think about nondeterminism

- (restricted)
 parallel
 computation
- tree of possible computations
- guessing and verifying the "right" choice

Are NFAs more powerful than DFAs?

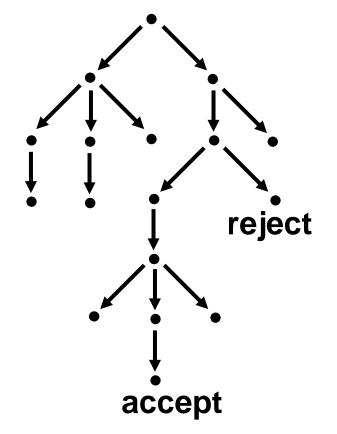
- There exist languages which require strictly more states to recognize with DFA than with NFA.
- Are there languages that can be recognized by an NFA and still cannot be recognized by *any* DFA (with any # of states)?

Are NFAs more powerful than DFAs?

- There exist languages which require strictly more states to recognize with DFA than with NFA.
- Are there languages that can be recognized by an NFA and still cannot be recognized by *any* DFA (with any # of states)?

Theorem: For every NFA N, there is a DFA M such that L(M) = L(N)

Corollary: A language is regular if and only if it is recognized by an NFA Equivalence of NFAs and DFAs (Proof) Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA <u>Goal:</u> Construct DFA $M = (Q', \Sigma, \delta', q_0', F')$ recognizing L(N)



Intuition: Run all threads of N in parallel, maintaining the set of states where all threads are.

Equivalence of NFAs and DFAs (Proof) Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA <u>Goal:</u> Construct DFA $M = (Q', \Sigma, \delta', q_0', F')$ recognizing L(N)

Intuition: Run all threads of *N* in parallel, maintaining the set of states where all threads are.

More precisely: Q' = P(Q) $\delta'(q', \sigma) = q'', \text{ where}$ $q'' = \{q \in Q | q \text{ is reachable from a state } r \in q'$ by either reading σ , or an ϵ move} Or in other words: $q'' = \bigcup_{r \in q'} \{q\} | \delta(r, \sigma) = q\}$ $q'_0 = \{q_0\}, F' = \{r \subseteq Q | r \text{ contains a state } q \in F\}$

ECAS

CS332 - Theory of Computation $E(g) = \int r |r| s reachable frame$

Proving the Construction Works

Claim: For every string *w*, running *M* on *w* leads to state

$\{q \in Q | \text{There exists a computation} \ of N \text{ on input } w \text{ ending at } q \}$

Proof idea: "By construction"

More formally, by induction on |w|.

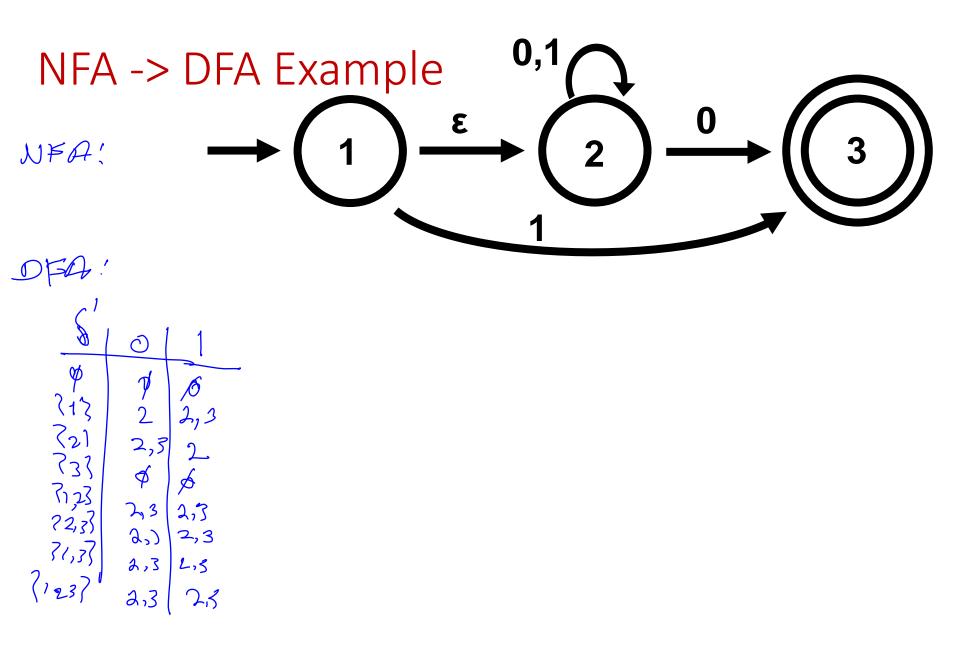
9 Vin O or more & mover

NFA -> DFA Example

NFA!

h a

states: [0], [9], [3], [3], [4], $\begin{array}{cccc}
 & 0, 1 \\
 & \phi & \phi \\
 & \phi & \phi \\
 & \phi & \phi \\
 & & F' = \left[\frac{1}{2} \right], \left\{ a, s \right\}
\end{array}$ \$ \$ \$ \$ \$ \$



Can we make the blowup in # states smaller?

Subset construction converts an n state NFA into a 2^n -state DFA

Could there be a construction that always produces, say, an n^2 -state DFA?

Theorem: For every $n \ge 1$, there is a language L_n such that

- 1. There is an (n + 1)-state NFA recognizing L_n .
- 2. There is no DFA recognizing L_n with fewer than 2^n states.

Conclusion: For finite automata, nondeterminism provides an exponential savings over determinism (in the worst case).

What does class of regular languages look like?

We saw that it's a pretty robust set of languages...
(L(NFAs) = L(DFAs)

- What about closure with respect to natural operations?

- Regular Operations

An Analogy (can Ighore)

In algebra, we try to identify operations which are common to many different mathematical structures

Example: The integers $\mathbb{Z} = \{... - 2, -1, 0, 1, 2, ...\}$ are **closed** under

- Addition: x + y
- Multiplication: $x \times y$
- Negation: -x
- ...but NOT Division: x / y

We'd like to investigate similar closure properties of the class of regular languages

Regular operations on languages Let $A, B \subseteq \Sigma^*$ be languages. Define

Union:
$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Concatenation:
$$A \circ B = \int XY [x \in A, y \in B]$$

 $A^{N} = \int x_{1} \dots x_{n} [\forall i, x_{i} \in A]$
Star: $A^{*} = \bigcup_{n \in \mathcal{N}} A^{n}$

Other operations Let $A, B \subseteq \Sigma^*$ be languages. Define

Complement:
$$\bar{A} = \begin{cases} \times | \chi \notin \mathcal{A} \\ \end{pmatrix}$$

Intersection:
$$A \cap B = \{\chi \mid \forall \in A \land \chi \in \mathcal{G}\}$$

Reverse: $A^R = \left[\chi_{1}, \chi_{b} \right] \left[\chi_{i} \in \Sigma, \eta \in \chi_{b} - \chi_{i} \in \mathcal{H} \right]$

Closure properties of the regular languages

Theorem: The class of regular languages is closed under all three regular operations (union, concatenation, star), as well as under complement, intersection, and reverse.

i.e., if A and B are regular, applying any of these operations yields a regular language

Proving Closure Properties

Complement

Complement: $\overline{A} = \{ w | w \notin A \}$ **Theorem:** If A is regular, then \overline{A} is also regular Proof idea:

• all accepting cfates become non accepting • all non-accepting states become accepting $F' = G \cdot F$

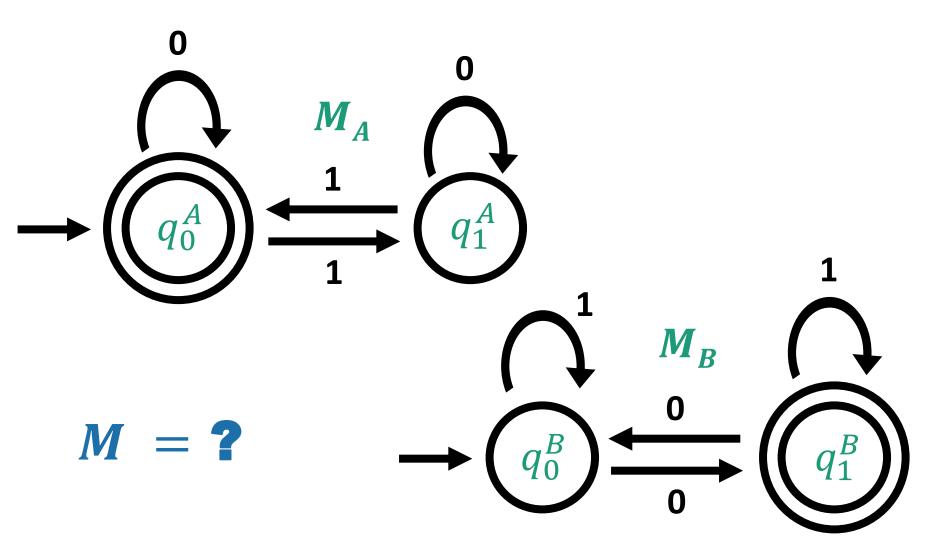
Union

Union: $A \cup B = \{ w | w \in A \text{ or } w \in B \}$ **Theorem:** If A and B are regular, then so is $A \cup B$ **Proof:**

Let $M_A = (Q_A, \Sigma, \delta_A, q_0^A, F_A)$ be a DFA recognizing A and $M_B = (Q_B, \Sigma, \delta_B, q_0^B, F_B)$ be a DFA recognizing B

<u>Goal</u>: Construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes $A \cup B$

Example



Intersection

Intersection: $A \cap B = \{ w | w \in A \text{ and } w \in B \}$ **Theorem:** If A and B are regular, then so is $A \cap B$ **Proof:**

Let $M_A = (Q_A, \Sigma, \delta_A, q_0^A, F_A)$ be a DFA recognizing A and $M_B = (Q_B, \Sigma, \delta_B, q_0^B, F_B)$ be a DFA recognizing B

<u>Goal</u>: Construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes $A \cap B$

Intersection

Intersection: $A \cap B = \{ w | w \in A \text{ and } w \in B \}$ **Theorem:** If A and B are regular, then so is $A \cap B$ **Another Proof:**

 $A \cap B = \overline{\overline{A} \cup \overline{B}}$

Operations on languages Let $A, B \subseteq \Sigma^*$ be languages. Define

Regular Operations $\begin{cases}
\text{Union: } A \cup B \\
\text{Concatenation: } A \circ B = \{ab \mid a \in A, b \in B\} \\
\text{Star: } A^* = \{a_1a_2...a_n \mid n \ge 0 \text{ and } a_i \in A\}
\end{cases}$ Complement: \overline{A} Intersection: $A \cap B$ Reverse: $A^R = \{a_1a_2...a_n \mid a_n...a_1 \in A\}$

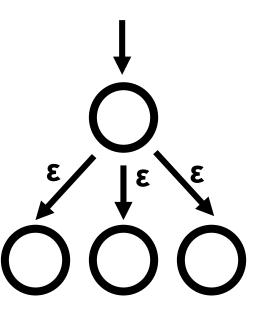
Theorem: The class of regular languages is closed under all six of these operations

Closure under Reverse

Theorem. The reverse of a regular language is also regular

Proof: Let *L* be a regular language and *M* be a DFA recognizing it. Construct an NFA M' recognizing L^R :

- Define M' as M with the arrows reversed.
- Make the start state of M be the accept state in M'.
- Make a new start state that goes to all accept states of M by ϵ -transitions.



Closure under Concatenation

Concatenation: $A \circ B = \{ ab \mid a \in A \text{ and } b \in B \}$

Theorem. If A and B are regular, $A \circ B$ is also regular. Proof: Given DFAs M_A and M_B , construct NFA by

- Connecting all accept states in M_A to the start state in M_B .
- Make all states in M_A non-accepting.

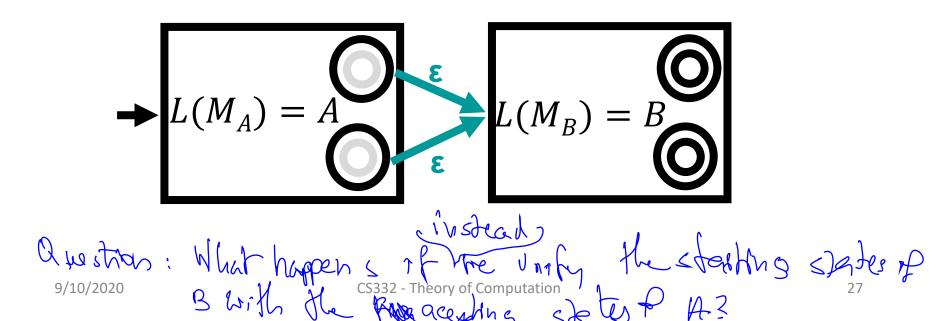
$$L(M_A) = A = A = L(M_B) = B = B$$

Closure under Concatenation

Concatenation: $A \circ B = \{ ab \mid a \in A \text{ and } b \in B \}$

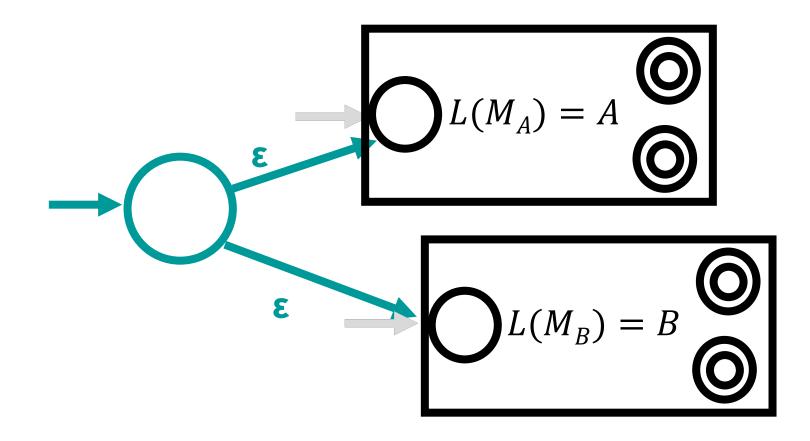
Theorem. If A and B are regular, $A \circ B$ is also regular. Proof: Given DFAs M_A and M_B , construct NFA by

- Connecting all accept states in M_A to the start state in M_B .
- Make all states in M_A non-accepting.



A Mystery Construction

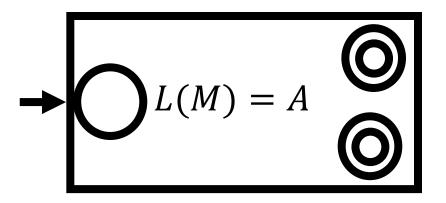
Given DFAs M_A recognizing A and M_B recognizing B, what does the following NFA recognize?



Closure under Star

Star:
$$A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$$

Theorem. If A is regular, A^* is also regular.



Closure under Star

Star:
$$A^* = \{ a_1 a_2 ... a_n | n \ge 0 \text{ and } a_i \in A \}$$

Theorem. If A is regular, A^* is also regular.

