
BU CS 332 – Theory of Computation

Lecture 3:

• Equivalence of NFAs and DFAs

• Closure under regular operations

Reading:

Sipser Ch 1.1-1.2

Ran Canetti

September 10, 2020

Formal Definition of a NFA

9/10/2020 CS332 - Theory of Computation 2

𝑄 is the set of states

Σ is the alphabet

 ∶ 𝑄 × Σ𝜀 → 𝑃(𝑄) is the transition function

𝑞0  𝑄 is the start state

𝐹 ⊆ 𝑄 is the set of accept states

An NFA is a 5-tuple 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹)

𝑀 accepts a string 𝑤 if there exists a path from 𝑞0 to
an accept state that can be followed by reading 𝑤.

DFAs vs. NFAs

9/10/2020 CS332 - Theory of Computation 3

Ways to think about
nondeterminism

• (restricted)
parallel
computation

• tree of possible
computations

• guessing and
verifying the
“right” choice

Deterministic

Computation
Nondeterministic

Computation

accept or reject accept

reject

Are NFAs more powerful than DFAs?

- There exist languages which require strictly more states to
recognize with DFA than with NFA.

- Are there languages that can be recognized by an NFA and
still cannot be recognized by any DFA (with any # of states)?

Theorem: For every NFA 𝑁, there is a DFA 𝑀 such that 𝐿 𝑀 =
𝐿(𝑁)

Corollary: A language is regular if and only if it is recognized by
an NFA

9/10/2020 CS332 - Theory of Computation 4

Are NFAs more powerful than DFAs?

- There exist languages which require strictly more states to
recognize with DFA than with NFA.

- Are there languages that can be recognized by an NFA and
still cannot be recognized by any DFA (with any # of states)?

Theorem: For every NFA 𝑁, there is a DFA 𝑀 such that 𝐿 𝑀 =
𝐿(𝑁)

Corollary: A language is regular if and only if it is recognized by
an NFA

9/10/2020 CS332 - Theory of Computation 5

Equivalence of NFAs and DFAs (Proof)

9/10/2020 CS332 - Theory of Computation 6

Let 𝑁 = (𝑄, Σ, , 𝑞0, 𝐹) be an NFA

Intuition: Run all threads of 𝑁 in
parallel, maintaining the set of
states where all threads are.

accept

reject

Goal: Construct DFA 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) recognizing 𝐿(𝑁)

Equivalence of NFAs and DFAs (Proof)

CS332 - Theory of Computation 7

Let 𝑁 = (𝑄, Σ, , 𝑞0, 𝐹) be an NFA

Intuition: Run all threads of 𝑁 in
parallel, maintaining the set of
states where all threads are.

Goal: Construct DFA 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) recognizing 𝐿(𝑁)

More precisely:
𝑄’ = 𝑃(𝑄)
𝛿′ 𝑞′, 𝜎 = 𝑞", where
𝑞" = 𝑞 ∈ 𝑄 𝑞 is reachable from a state 𝑟 ∈ 𝑞′

by either reading 𝜎, or an 𝜖 move}
Or in other words: 𝑞" = ∪𝑟∈𝑞′ { 𝑞 | 𝛿(𝑟, 𝜎) = 𝑞}

𝑞′0 = 𝑞0 , 𝐹′ = r ⊆ 𝑄 𝑟 contains a state 𝑞 ∈ 𝐹}

ran

ran

Proving the Construction Works

Claim: For every string 𝑤, running 𝑀 on 𝑤 leads to state

{𝑞 ∈ 𝑄|There exists a computation

of 𝑁 on input 𝑤 ending at 𝑞}

Proof idea: “By construction”

More formally, by induction on |𝑤|.

9/10/2020 CS332 - Theory of Computation 8

ran

ran

NFA -> DFA Example

9/10/2020 CS332 - Theory of Computation 9

1
a b

ran

NFA -> DFA Example

9/10/2020 CS332 - Theory of Computation 10

0,1

ε 0
2 31

1

ran

Can we make the blowup in # states smaller?

Subset construction converts an 𝑛 state NFA into a 2𝑛-state
DFA

Could there be a construction that always produces, say, an
𝑛2-state DFA?

Theorem: For every 𝑛 ≥ 1, there is a language 𝐿𝑛 such that

1. There is an 𝑛 + 1 -state NFA recognizing 𝐿𝑛.

2. There is no DFA recognizing 𝐿𝑛 with fewer than 2𝑛

states.

Conclusion: For finite automata, nondeterminism provides an
exponential savings over determinism (in the worst case).

9/10/2020 CS332 - Theory of Computation 11

What does class of regular
languages look like?

- We saw that it’s a pretty robust set of
languages…
(L(NFAs) = L(DFAs)

- What about closure with respect to
natural operations?

9/10/2020 CS332 - Theory of Computation 12

- Regular Operations

9/10/2020 CS332 - Theory of Computation 13

An Analogy

In algebra, we try to identify operations which are
common to many different mathematical structures

9/10/2020 CS332 - Theory of Computation 14

Example: The integers ℤ = {…− 2,−1, 0, 1, 2, … } are
closed under
• Addition: 𝑥 + 𝑦
• Multiplication: 𝑥 × 𝑦
• Negation: −𝑥
• …but NOT Division: 𝑥 / 𝑦

We’d like to investigate similar closure properties of the
class of regular languages

ran

Regular operations on languages
Let 𝐴, 𝐵 ⊆ Σ∗ be languages. Define

Union: 𝐴 ∪ 𝐵 =

Concatenation: 𝐴 ∘ 𝐵 =

Star: 𝐴∗ =

9/10/2020 CS332 - Theory of Computation 15

ran

Other operations
Let 𝐴, 𝐵 ⊆ Σ∗ be languages. Define

Complement: ҧ𝐴 =

Intersection: 𝐴 ∩ 𝐵 =

Reverse: 𝐴𝑅 =

9/10/2020 CS332 - Theory of Computation 16

ran

Closure properties of the regular languages

Theorem: The class of regular languages is closed under
all three regular operations (union, concatenation, star),
as well as under complement, intersection, and reverse.

i.e., if 𝐴 and 𝐵 are regular, applying any of these
operations yields a regular language

9/10/2020 CS332 - Theory of Computation 17

Proving Closure Properties

9/10/2020 CS332 - Theory of Computation 18

Complement

Complement: ҧ𝐴 = 𝑤 𝑤 ∉ 𝐴}

Theorem: If 𝐴 is regular, then ҧ𝐴 is also regular

Proof idea:

9/10/2020 CS332 - Theory of Computation 19

ran

Union

9/10/2020 CS332 - Theory of Computation 20

Union: 𝐴 ∪ 𝐵 = 𝑤 𝑤 ∈ 𝐴 or 𝑤 ∈ 𝐵}

Theorem: If 𝐴 and 𝐵 are regular, then so is 𝐴 ∪ 𝐵

Proof:

Let 𝑀𝐴 = (𝑄𝐴, Σ, 𝐴, 𝑞0
𝐴, 𝐹𝐴) be a DFA recognizing 𝐴 and

𝑀𝐵 = (𝑄𝐵, Σ, 𝐵, 𝑞0
𝐵 , 𝐹𝐵) be a DFA recognizing 𝐵

Goal: Construct a DFA 𝑀 = 𝑄, Σ, , 𝑞0, 𝐹

that recognizes 𝐴 ∪ 𝐵

Example

9/10/2020 CS332 - Theory of Computation 21

𝑞0
𝐴 𝑞1

𝐴

0
0

1

1

𝑞0
𝐵 𝑞1

𝐵

1
1

0

0

𝑴𝑨

𝑴𝑩

𝑴 = ?

Intersection

9/10/2020 CS332 - Theory of Computation 22

Intersection: 𝐴 ∩ 𝐵 = 𝑤 𝑤 ∈ 𝐴 and 𝑤 ∈ 𝐵}

Theorem: If 𝐴 and 𝐵 are regular, then so is 𝐴 ∩ 𝐵

Proof:

Let 𝑀𝐴 = (𝑄𝐴, Σ, 𝐴, 𝑞0
𝐴, 𝐹𝐴) be a DFA recognizing 𝐴 and

𝑀𝐵 = (𝑄𝐵, Σ, 𝐵, 𝑞0
𝐵 , 𝐹𝐵) be a DFA recognizing 𝐵

Goal: Construct a DFA 𝑀 = 𝑄, Σ, , 𝑞0, 𝐹

that recognizes 𝐴 ∩ 𝐵

Intersection

9/10/2020 CS332 - Theory of Computation 23

Intersection: 𝐴 ∩ 𝐵 = 𝑤 𝑤 ∈ 𝐴 and 𝑤 ∈ 𝐵}

Theorem: If 𝐴 and 𝐵 are regular, then so is 𝐴 ∩ 𝐵

Another Proof:

𝐴 ∩ 𝐵 = ҧ𝐴 ∪ ത𝐵

Operations on languages
Let 𝐴, 𝐵 ⊆ Σ∗ be languages. Define

Union: 𝐴 ∪ 𝐵

Concatenation: 𝐴 ∘ 𝐵 = 𝑎𝑏 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

Star: 𝐴∗ = { 𝑎1𝑎2…𝑎𝑛|𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴}

Complement: ҧ𝐴

Intersection: 𝐴 ∩ 𝐵

Reverse: 𝐴𝑅 = { 𝑎1𝑎2…𝑎𝑛|𝑎𝑛…𝑎1 ∈ 𝐴}

Theorem: The class of regular languages is closed under all six
of these operations

9/10/2020 CS332 - Theory of Computation 24

{Regular
Operations

Closure under Reverse

9/10/2020 CS332 - Theory of Computation 25

Theorem. The reverse of a regular language is also regular

Proof: Let 𝐿 be a regular language and 𝑀 be a DFA recognizing it.
Construct an NFA 𝑀′ recognizing 𝐿𝑅:

• Define 𝑀′ as 𝑀 with the arrows reversed.

• Make the start state of 𝑀 be the accept
state in 𝑀′.

• Make a new start state that goes to all
accept states of 𝑀 by ε-transitions.

ε ε ε

Closure under Concatenation

9/10/2020 CS332 - Theory of Computation 26

Concatenation: 𝐴 ∘ 𝐵 = { 𝑎𝑏 | 𝑎  𝐴 and 𝑏  𝐵 }

Theorem. If 𝐴 and 𝐵 are regular, 𝐴 ∘ 𝐵 is also regular.

Proof: Given DFAs 𝑀𝐴 and 𝑀𝐵, construct NFA by

• Connecting all accept states in 𝑀𝐴 to the start state in 𝑀𝐵.

• Make all states in 𝑀𝐴 non-accepting.

𝐿(𝑀𝐴) = 𝐴 𝐿(𝑀𝐵) = 𝐵

Closure under Concatenation

9/10/2020 CS332 - Theory of Computation 27

Concatenation: 𝐴 ∘ 𝐵 = { 𝑎𝑏 | 𝑎  𝐴 and 𝑏  𝐵 }

Theorem. If 𝐴 and 𝐵 are regular, 𝐴 ∘ 𝐵 is also regular.

Proof: Given DFAs 𝑀𝐴 and 𝑀𝐵, construct NFA by

• Connecting all accept states in 𝑀𝐴 to the start state in 𝑀𝐵.

• Make all states in 𝑀𝐴 non-accepting.

ε

ε

𝐿(𝑀𝐴) = 𝐴 𝐿(𝑀𝐵) = 𝐵

ran

ran

ran

ran

ran

ran

ran

ran

ran

A Mystery Construction

9/10/2020 CS332 - Theory of Computation 28

ε

ε

𝐿(𝑀𝐴) = 𝐴

𝐿(𝑀𝐵) = 𝐵

Given DFAs 𝑀𝐴 recognizing 𝐴 and 𝑀𝐵 recognizing 𝐵, what does the

following NFA recognize?

ran

ran

ran

ran

ran

ran

ran

ran

Closure under Star

9/10/2020 CS332 - Theory of Computation 29

Star: 𝐴∗ = { 𝑎1𝑎2…𝑎𝑛|𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴}

Theorem. If 𝐴 is regular, 𝐴∗ is also regular.

𝐿(𝑀) = 𝐴

Closure under Star

9/10/2020 CS332 - Theory of Computation 30

Star: 𝐴∗ = { 𝑎1𝑎2…𝑎𝑛|𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴}

Theorem. If 𝐴 is regular, 𝐴∗ is also regular.

𝐿(𝑀) = 𝐴ε

ε

ε

