
BU CS 332 – Theory of Computation

Lecture 2:

• Deterministic Finite Automata,

Regular languages

• Non-deterministic FAs

Reading:

Sipser Ch 1.1-1.2

Ran Canetti

September 8, 2020

ran

Review: What is a Computational Problem?

A computational problem is represented by way of a function

𝑓:𝐷 → 𝑅

(𝐷 is the domain, 𝑅 is the range).

A naïve representation of 𝑓 : via a table

Note: 𝐷 → 𝑅 can be infinite! (That’s the interesting case…)

9/8/2020 CS332 - Theory of Computation 2

Elements of D Corresponding value of f

ran

ran

What is a Computational Problem?

We will concentrate on functions from strings to {0,1}.

(Or: recognizing whether a string is in a language.)

• Alphabet: A finite set Ʃ

Ex. Ʃ = {𝑎, 𝑏, … , 𝑧}

• String: A finite concatenation of alphabet symbols (order matters)

Ex. 𝑏𝑞𝑟, 𝑎𝑏𝑎𝑏𝑏

The length of a string is the number of symbols.

𝜀 denotes empty string, length 0

Ʃ
∗

= set of all finite strings over Ʃ

• Language: A (possibly infinite) set 𝐿 of strings : 𝐿 ⊆ Σ∗

9/8/2020 CS332 - Theory of Computation 3

ran

Examples of Languages (Computational problems)

Parity: Given a string consisting of 𝑎’s and 𝑏’s, does
it contain an even number of 𝑎’s?

Ʃ = 𝐿 =

Primality: Given a natural number 𝑥 (represented in
binary), is 𝑥 prime?

Ʃ = 𝐿 =

Halting Problem: Given a C program, can it ever get
stuck in an infinite loop?

Ʃ = 𝐿 =

9/8/2020 CS332 - Theory of Computation 4

ran

Models of computation: Machines

Computation is the processing of information by the repeated application of a
small set of Simple operations.

Input 𝑎 𝑏 𝑎 𝑎

Finite
control

…

Abstraction: We don’t care how the control is implemented. We simply
consider “states” of the control. We want the possible number of states
to be small/bounded, and to transition between states using fixed rules.

What is the simplest “machine model” that can capture computation?

(Finite = “fixed size, independent of input length”)

ran

Machine Models

• Finite Automata (FAs): Machine with a finite amount of
unstructured memory

9/8/2020 CS332 - Theory of Computation 6

Input 𝑎 𝑏 𝑎 𝑎

Finite
control

…

Control scans input left-to-right
Can check simple patterns
Can’t perform unlimited counting

Useful for modeling chips, simple control systems, choose-your-
own adventure games, streaming algorithms…

ran

Machine Models

• Pushdown Automata (PDAs): Machine with unbounded
structured memory in the form of a stack

9/8/2020 CS332 - Theory of Computation 7

Input 𝑎 𝑏 𝑎 𝑎

Finite
control

…

Control scans input left-to-right
Can use stack to count, balance
parentheses

Useful for modeling parsers, compilers, some math calculations

𝑏

𝑏

𝑎 Memory: Infinite Stack

ran

Machine Models

• Turing Machines (TMs): Machine with unbounded,
unstructured memory

9/8/2020 CS332 - Theory of Computation 8

Input 𝑎 𝑏 𝑎 𝑎

Finite
control

…

Control can scan in both directions
Control can both read and write

Model for general sequential computation
Church-Turing Thesis: Everything we intuitively think of as
“computable” is computable by a Turing Machine

ran

What would we like to know?

We will classify languages (computational problems)
based on which types of machines can recognize them

Then we will show thing like:

Inclusion: Every language recognizable by a FA is also
recognizable by a TM

Non-inclusion: There exist languages recognizable by TMs
which are not recognizable by FAs

Hardness: Identify a “hard” and “easy” languages
Robustness: Alternative definitions of the same class

Ex. Languages recognizable by FAs = regular expressions

9/8/2020 CS332 - Theory of Computation 9

ran

Why study theory of computation?

• You will learn how to formally reason about
computation

• You will learn the technology-independent foundations
of CS

Philosophically interesting questions:
• Are there well-defined problems which cannot be solved by

computers?
• Can we always find the solution to a puzzle faster than trying

all possibilities?
• Can we say what it means for one problem to be “harder”

than another?

• This is the core of CS!
9/8/2020 CS332 - Theory of Computation 10

Why study theory of computation?

• You will learn how to formally reason about
computation

• You will learn the technology-independent foundations
of CS

9/8/2020 CS332 - Theory of Computation 11

Why study theory of computation?

Practical knowledge for developers

9/8/2020 CS332 - Theory of Computation 12

“Boss, I can’t find an efficient algorithm.
I guess I’m just too dumb.”

“Boss, I can’t find an efficient algorithm
because no such algorithm exists.”

Will you be asked about this material on job interviews?
No promises, but a true story…

Anatomy of a DFA

9/8/2020 CS332 - Theory of Computation 16

𝒒𝟐

0
0,1

00

1

1

1

𝒒𝟎

𝒒𝟏

𝒒𝟑

Formal Definition of a DFA

9/8/2020 CS332 - Theory of Computation 17

𝑄 is the set of states

Σ is the alphabet

 ∶ 𝑄 × Σ → 𝑄 is the transition function

𝑞0  𝑄 is the start state

𝐹 ⊆ 𝑄 is the set of accept states

A finite automaton is a 5-tuple 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹)

ran

ran

Formal Definition of DFA Computation

9/8/2020 CS332 - Theory of Computation 18

𝐿(𝑀) = the language of machine 𝑀
= set of all (finite) strings machine 𝑀 accepts

𝑀 recognizes the language 𝐿(𝑀)

A DFA 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) accepts a string
𝑤 = 𝑤1𝑤2 · · · 𝑤𝑛 ∈ Σ∗ (where each 𝑤𝑖 ∈ Σ) if there exist
𝑟0, . . . , 𝑟𝑛 ∈ 𝑄 such that

1. 𝑟0 = 𝑞0
2. 𝛿(𝑟𝑖 , 𝑤𝑖+1) = 𝑟𝑖+1 for each 𝑖 = 0, . . . , 𝑛 − 1, and
3. 𝑟𝑛 ∈ 𝐹

ran

ran

A DFA for Parity

Parity: Given a string consisting of 𝑎’s and 𝑏’s, does
it contain an even number of 𝑎’s?

Ʃ = {𝑎, 𝑏} 𝐿 = {𝑤 | 𝑤 contains an even number of 𝑎’s}

9/8/2020 CS332 - Theory of Computation 19

𝑞0 𝑞1

𝑏 𝑏

𝑎

𝑎

State set 𝑄 =
Alphabet Ʃ =
Transition function 𝛿

Start state 𝑞0
Set of accept states 𝐹 =

𝛿 𝑎 𝑏

𝑞0

𝑞1

ran

ran

ran

Example: Computing with the Parity DFA

9/8/2020 CS332 - Theory of Computation 20

𝑞0 𝑞1

𝑏 𝑏

𝑎

𝑎

A DFA 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) accepts a string
𝑤 = 𝑤1𝑤2 · · · 𝑤𝑛 ∈ Σ∗ (where each 𝑤𝑖 ∈ Σ) if there exist
𝑟0, . . . , 𝑟𝑛 ∈ 𝑄 such that

1. 𝑟0 = 𝑞0
2. 𝛿(𝑟𝑖 , 𝑤𝑖+1) = 𝑟𝑖+1 for each 𝑖 = 0, . . . , 𝑛 − 1, and
3. 𝑟𝑛 ∈ 𝐹

Let 𝑤 = 𝑎𝑏𝑏𝑎
Does 𝑀 accept 𝑤?

Automata Tutor

9/8/2020 CS332 - Theory of Computation 21

http://automatatutor.com/

http://automatatutor.com/
ran

ran

ran

ran

ran

ran

Regular Languages

9/8/2020 CS332 - Theory of Computation 22

Definition: A language is regular if it is recognized by a DFA

𝑳 = { 𝒘 ∈ 𝟎, 𝟏 ∗| 𝒘 contains 𝟎𝟎𝟏 } is regular

𝑳 = { 𝒘 ∈ 𝒂, 𝒃 ∗ | 𝒘 has an even number of 𝒂’s } is regular

Many interesting programs recognize regular languages

NETWORK PROTOCOLS

COMPILERS

GENETIC TESTING

ARITHMETIC

ran

ran

ran

ran

ran

ran

Internet Transmission Control Protocol

9/8/2020 CS332 - Theory of Computation 23

Let TCPS = { 𝑤 | 𝑤 is a complete TCP Session}
Theorem. TCPS is regular

Compilers

9/8/2020 CS332 - Theory of Computation 24

Comments :

Are delimited by /* */

Cannot have nested /* */

Must be closed by */

*/ is illegal outside a comment

COMMENTS = {strings over {0,1, /, *} with legal comments}

Theorem. COMMENTS is regular.

Genetic Testing

9/8/2020 CS332 - Theory of Computation 25

DNA sequences are strings over the alphabet {𝑨, 𝑪, 𝑮, 𝑻}.

A gene 𝒈 is a special substring over this alphabet.

A genetic test searches a DNA sequence for a gene.

GENETICTEST𝒈 = {strings over {𝑨, 𝑪, 𝑮, 𝑻} containing 𝒈 as a substring}

Theorem. GENETICTEST𝒈 is regular for every gene 𝒈.

Non-deterministic Finite Automata

9/8/2020 CS332 - Theory of Computation 26

9/8/2020 CS332 - Theory of Computation 27

1 0

1

0 1

0,1

0

ran

Nondeterminism

9/8/2020 CS332 - Theory of Computation 28

1 0

1

0 1

0,1

0

A Nondeterministic Finite Automaton (NFA) accepts if

there is a way to make it reach an accept state.

ran

ran

Nondeterminism

9/8/2020 CS332 - Theory of Computation 29

1 0

1

0 1

0,1

0

Example: Does this NFA accept the string 1100?

ran

Some special transitions

9/8/2020 CS332 - Theory of Computation 30

0

0, 1

𝜺

1

Example

9/8/2020 CS332 - Theory of Computation 31

1

0

0

𝑳(𝑴) =

𝜺

𝜺

ran

ran

Example

9/8/2020 CS332 - Theory of Computation 32

0,1

0,𝜺 1

0,1

1

𝑳(𝑴) =

ran

Formal Definition of a NFA

9/8/2020 CS332 - Theory of Computation 33

𝑄 is the set of states

Σ is the alphabet

 ∶ 𝑄 × Σ𝜀 → 𝑃(𝑄) is the transition function

𝑞0  𝑄 is the start state

𝐹 ⊆ 𝑄 is the set of accept states

An NFA is a 5-tuple 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹)

𝑀 accepts a string 𝑤 if there exists a path from 𝑞0 to
an accept state that can be followed by reading 𝑤.

ran

Example

9/8/2020 CS332 - Theory of Computation 34

1

0

0
𝜺

𝜺

(𝒒𝟑, 𝟏) =

𝑴 = (𝑸, 𝚺, , 𝑸𝟎, 𝑭)

𝑸 = {𝒒𝟎,𝒒𝟏, 𝒒𝟐, 𝒒𝟑, 𝒒𝟒}

𝚺 = {𝟎, 𝟏}

𝑭 = {𝒒𝟒}

(𝒒𝟐, 𝟏) =

𝒒𝟏

𝒒𝟐

𝒒𝟑

𝒒𝟒

𝒒𝟎

Example

9/8/2020 CS332 - Theory of Computation 35

0,1

0,𝜺 1

0,1

1
𝒒𝟏 𝒒𝟐 𝒒𝟑𝒒𝟎

𝑵 = (𝑸, 𝚺, , 𝒒𝟎, 𝑭)

𝑸 = {𝒒𝟎,𝒒𝟏, 𝒒𝟐, 𝒒𝟑}

𝚺 = {𝟎, 𝟏}

𝑭 = {𝒒𝟑}

(𝒒𝟎, 𝟏) =

(𝒒𝟐, 𝟎) =

(𝒒𝟎, 𝟎) =

(𝒒𝟏, 𝜺) =

Nondeterminism

9/8/2020 CS332 - Theory of Computation 36

Ways to think about
nondeterminism

• (restricted)
parallel
computation

• tree of possible
computations

• guessing and
verifying the
“right” choice

Deterministic

Computation
Nondeterministic

Computation

accept or reject accept

reject

ran

Why study NFAs?

• Not really a realistic model of computation: Real
computing devices can’t really try many possibilities in
parallel

But:

• Useful tool for understanding power of DFAs/regular
languages

• NFAs can be simpler than DFAs

• Lets us study “nondeterminism” as a resource

(cf. P vs. NP)

9/8/2020 CS332 - Theory of Computation 37

NFAs can be simpler than DFAs

9/8/2020 CS332 - Theory of Computation 38

An NFA that recognizes the language {1}:

1

1 0,1

0,1
0

A DFA that recognizes the
language {1}:

ran

ran

Sometimes DFAs must be larger

9/8/2020 CS332 - Theory of Computation 39

Theorem. Every DFA for the language {1} must have at
least 3 states.

Proof:

ran

ran

Equivalence of NFAs and
DFAs

9/8/2020 CS332 - Theory of Computation 40

Equivalence of NFAs and DFAs

Every DFA is an NFA, so NFAs are at least as powerful as
DFAs

Theorem: For every NFA 𝑁, there is a DFA 𝑀 such that
𝐿 𝑀 = 𝐿(𝑁)

Corollary: A language is regular if and only if it is
recognized by an NFA

9/8/2020 CS332 - Theory of Computation 41

ran

ran

Equivalence of NFAs and DFAs (Proof)

9/8/2020 CS332 - Theory of Computation 42

Let 𝑁 = (𝑄, Σ, , 𝑞0, 𝐹) be an NFA

Intuition: Run all threads of 𝑁 in
parallel, maintaining the set of
states where all threads are.

accept

reject

Goal: Construct DFA 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) recognizing 𝐿(𝑁)

Formally: 𝑄’ = 𝑃(𝑄)

“The Subset Construction”

NFA -> DFA Example

9/8/2020 CS332 - Theory of Computation 43

1
a b

Subset Construction (Formally)

9/8/2020 CS332 - Theory of Computation 44

𝛿 𝑅, = for all 𝑅 ⊆ 𝑄 and 𝜎 ∈ Σ.

𝑄

𝛿 ∶ 𝑄  Σ → 𝑄

𝑞0 =

𝐹 =

Input: NFA 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

Output: DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

NFA -> DFA Example

9/8/2020 CS332 - Theory of Computation 45

0,1

ε 0
2 31

1

Subset Construction (Formally)

9/8/2020 CS332 - Theory of Computation 46

𝛿 𝑅, = 𝑟∈𝑅ڂ 𝛿(𝑟, 𝜎) for all 𝑅 ⊆ 𝑄 and 𝜎 ∈ Σ.

𝑄 = 𝑃(𝑄)

𝛿 ∶ 𝑄  Σ → 𝑄

𝑞0 = {𝑞0}

𝐹 = { 𝑅  𝑄 | 𝑅 contains some accept state of 𝑁}

Input: NFA 𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

Output: DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

Proving the Construction Works

Claim: For every string 𝑤, running 𝑀 on 𝑤 leads to state

{𝑞 ∈ 𝑄|There exists a computation

of 𝑁 on input 𝑤 ending at 𝑞}

Proof idea: By induction on |𝑤|

9/8/2020 CS332 - Theory of Computation 47

Historical Note

Subset Construction introduced in Rabin & Scott’s 1959
paper “Finite Automata and their Decision Problems”

9/8/2020 CS332 - Theory of Computation 48

1976 ACM Turing Award citation

For their joint paper "Finite Automata and
Their Decision Problem," which introduced

the idea of nondeterministic machines,
which has proved to be an enormously
valuable concept. Their (Scott & Rabin)

classic paper has been a continuous source
of inspiration for subsequent work in this

field.

ran

Is this construction the best we can do?

Subset construction converts an 𝑛 state NFA into a 2𝑛-state
DFA

Could there be a construction that always produces, say, an
𝑛2-state DFA?

Theorem: For every 𝑛 ≥ 1, there is a language 𝐿𝑛 such that

1. There is an 𝑛 + 1 -state NFA recognizing 𝐿𝑛.

2. There is no DFA recognizing 𝐿𝑛 with fewer than 2𝑛

states.

Conclusion: For finite automata, nondeterminism provides an
exponential savings over determinism (in the worst case).

9/8/2020 CS332 - Theory of Computation 49

