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Review: What is a Computational Problem?

A computational problem is represented by way of a function 

𝑓:𝐷 → 𝑅

(𝐷 is the domain, 𝑅 is  the range).

A naïve representation of 𝑓 :  via a table   

Note: 𝐷 → 𝑅 can be infinite!   (That’s the interesting case…)
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Elements of D Corresponding value of f

ran

ran



What is a Computational Problem?

We will concentrate on functions from strings to {0,1}.  

(Or:  recognizing whether a string is in a language. )

• Alphabet: A finite set Ʃ

Ex. Ʃ = {𝑎, 𝑏, … , 𝑧}

• String: A finite concatenation of alphabet symbols (order matters)

Ex. 𝑏𝑞𝑟, 𝑎𝑏𝑎𝑏𝑏

The length of a string is the number of symbols.

𝜀 denotes empty string, length 0

Ʃ
∗

= set of all finite strings over Ʃ

• Language: A (possibly infinite) set 𝐿 of strings   :  𝐿 ⊆ Σ∗
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ran



Examples of Languages (Computational problems)

Parity: Given a string consisting of 𝑎’s and 𝑏’s, does 
it contain an even number of 𝑎’s?

Ʃ = 𝐿 =

Primality: Given a natural number 𝑥 (represented in 
binary), is 𝑥 prime?

Ʃ = 𝐿 =

Halting Problem: Given a C program, can it ever get 
stuck in an infinite loop?

Ʃ = 𝐿 =
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ran



Models of computation:  Machines

Computation is the processing of information by the repeated application of a 
small set of Simple operations.

Input 𝑎 𝑏 𝑎 𝑎

Finite 
control

…

Abstraction: We don’t care how the control is implemented. We simply 
consider “states” of  the control.  We want the possible number of states 
to be small/bounded, and to transition between states using fixed rules.

What is the simplest “machine model” that can capture computation? 

(Finite =  “fixed size, independent of input length”)

ran



Machine Models

• Finite Automata (FAs): Machine with a finite amount of 
unstructured memory
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Input 𝑎 𝑏 𝑎 𝑎

Finite 
control

…

Control scans input left-to-right
Can check simple patterns
Can’t perform unlimited counting

Useful for modeling chips, simple control systems, choose-your-
own adventure games, streaming algorithms…

ran



Machine Models

• Pushdown Automata (PDAs): Machine with unbounded 
structured memory in the form of a stack
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Input 𝑎 𝑏 𝑎 𝑎

Finite 
control

…

Control scans input left-to-right
Can use stack to count, balance 
parentheses

Useful for modeling parsers, compilers, some math calculations

𝑏

𝑏

𝑎 Memory: Infinite Stack

ran



Machine Models

• Turing Machines (TMs): Machine with unbounded, 
unstructured memory
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Input 𝑎 𝑏 𝑎 𝑎

Finite 
control

…

Control can scan in both directions
Control can both read and write

Model for general sequential computation
Church-Turing Thesis: Everything we intuitively think of as 
“computable” is computable by a Turing Machine

ran



What would we like to know?

We will classify languages (computational problems) 
based on which types of machines can recognize them

Then we will show thing like:

Inclusion: Every language recognizable by a FA is also 
recognizable by a TM

Non-inclusion: There exist languages recognizable by TMs 
which are not recognizable by FAs

Hardness: Identify a “hard” and “easy” languages 
Robustness: Alternative definitions of the same class

Ex. Languages recognizable by FAs = regular expressions
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ran



Why study theory of computation?

• You will learn how to formally reason about 
computation

• You will learn the technology-independent foundations 
of CS

Philosophically interesting questions:
• Are there well-defined problems which cannot be solved by 

computers?
• Can we always find the solution to a puzzle faster than trying 

all possibilities?
• Can we say what it means for one problem to be “harder” 

than another?

• This is the core of CS!
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Why study theory of computation?

• You will learn how to formally reason about 
computation

• You will learn the technology-independent foundations 
of CS
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Why study theory of computation?

Practical knowledge for developers
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“Boss, I can’t find an efficient algorithm.
I guess I’m just too dumb.”

“Boss, I can’t find an efficient algorithm 
because no such algorithm exists.”

Will you be asked about this material on job interviews?
No promises, but a true story…



Anatomy of a DFA
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𝒒𝟐

0
0,1

00

1

1

1

𝒒𝟎

𝒒𝟏

𝒒𝟑



Formal Definition of a DFA
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𝑄 is the set of states

Σ is the alphabet

 ∶ 𝑄 × Σ → 𝑄 is the transition function

𝑞0  𝑄 is the start state

𝐹 ⊆ 𝑄 is the set of accept states

A finite automaton is a 5-tuple 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹)

ran

ran



Formal Definition of DFA Computation
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𝐿(𝑀) = the language of machine 𝑀
= set of all (finite) strings machine 𝑀 accepts

𝑀 recognizes the language 𝐿(𝑀)

A DFA 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) accepts a string 
𝑤 = 𝑤1𝑤2 · · · 𝑤𝑛 ∈ Σ∗ (where each 𝑤𝑖 ∈ Σ) if there exist 
𝑟0, . . . , 𝑟𝑛 ∈ 𝑄 such that 

1. 𝑟0 = 𝑞0
2. 𝛿(𝑟𝑖 , 𝑤𝑖+1) = 𝑟𝑖+1 for each 𝑖 = 0, . . . , 𝑛 − 1, and
3.   𝑟𝑛 ∈ 𝐹

ran

ran



A DFA for Parity

Parity: Given a string consisting of 𝑎’s and 𝑏’s, does 
it contain an even number of 𝑎’s?

Ʃ = {𝑎, 𝑏} 𝐿 = {𝑤 | 𝑤 contains an even number of 𝑎’s}
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𝑞0 𝑞1

𝑏 𝑏

𝑎

𝑎

State set 𝑄 =
Alphabet Ʃ =
Transition function 𝛿

Start state 𝑞0
Set of accept states 𝐹 =

𝛿 𝑎 𝑏

𝑞0

𝑞1

ran

ran

ran



Example: Computing with the Parity DFA
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𝑞0 𝑞1

𝑏 𝑏

𝑎

𝑎

A DFA 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) accepts a string 
𝑤 = 𝑤1𝑤2 · · · 𝑤𝑛 ∈ Σ∗ (where each 𝑤𝑖 ∈ Σ) if there exist 
𝑟0, . . . , 𝑟𝑛 ∈ 𝑄 such that 

1. 𝑟0 = 𝑞0
2. 𝛿(𝑟𝑖 , 𝑤𝑖+1) = 𝑟𝑖+1 for each 𝑖 = 0, . . . , 𝑛 − 1, and
3.   𝑟𝑛 ∈ 𝐹

Let 𝑤 = 𝑎𝑏𝑏𝑎
Does 𝑀 accept 𝑤?



Automata Tutor
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http://automatatutor.com/

http://automatatutor.com/
ran

ran

ran

ran

ran

ran



Regular Languages
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Definition: A language is regular if it is recognized by a DFA

𝑳 = { 𝒘 ∈ 𝟎, 𝟏 ∗| 𝒘 contains 𝟎𝟎𝟏 } is regular

𝑳 = { 𝒘 ∈ 𝒂, 𝒃 ∗ | 𝒘 has an even number of 𝒂’s } is regular

Many interesting programs recognize regular languages

NETWORK PROTOCOLS

COMPILERS

GENETIC TESTING

ARITHMETIC

ran

ran

ran

ran

ran

ran



Internet Transmission Control Protocol
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Let TCPS = { 𝑤 | 𝑤 is a complete TCP Session}
Theorem. TCPS is regular



Compilers
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Comments :

Are delimited by /* */

Cannot have nested /* */

Must be closed by */

*/ is illegal outside a comment

COMMENTS = {strings over {0,1, /, *} with legal comments}

Theorem. COMMENTS is regular.



Genetic Testing
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DNA sequences are strings over the alphabet {𝑨, 𝑪, 𝑮, 𝑻}.

A gene 𝒈 is a special substring over this alphabet.

A genetic test searches a  DNA sequence for a gene.

GENETICTEST𝒈 = {strings over {𝑨, 𝑪, 𝑮, 𝑻} containing 𝒈 as a substring}

Theorem. GENETICTEST𝒈 is regular for every gene 𝒈.



Non-deterministic Finite Automata
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1 0

1

0 1

0,1

0

ran



Nondeterminism
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1 0

1

0 1

0,1

0

A Nondeterministic Finite Automaton (NFA) accepts if 

there is a way to make it reach an accept state.

ran

ran



Nondeterminism
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1 0

1

0 1

0,1

0

Example: Does this NFA accept the string 1100?

ran



Some special transitions
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0

0, 1

𝜺

1



Example
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1

0

0

𝑳(𝑴) =

𝜺

𝜺

ran

ran



Example
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0,1

0,𝜺 1

0,1

1

𝑳(𝑴) =

ran



Formal Definition of a NFA
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𝑄 is the set of states

Σ is the alphabet

 ∶ 𝑄 × Σ𝜀 → 𝑃(𝑄) is the transition function

𝑞0  𝑄 is the start state

𝐹 ⊆ 𝑄 is the set of accept states

An NFA is a 5-tuple 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹)

𝑀 accepts a string 𝑤 if there exists a path from 𝑞0 to 
an accept state that can be followed by reading 𝑤.

ran



Example
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1

0

0
𝜺

𝜺

(𝒒𝟑, 𝟏) =

𝑴 = (𝑸, 𝚺, , 𝑸𝟎, 𝑭)

𝑸 = {𝒒𝟎,𝒒𝟏, 𝒒𝟐, 𝒒𝟑, 𝒒𝟒}

𝚺 = {𝟎, 𝟏}

𝑭 = {𝒒𝟒}

(𝒒𝟐, 𝟏) =

𝒒𝟏

𝒒𝟐

𝒒𝟑

𝒒𝟒

𝒒𝟎



Example
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0,1

0,𝜺 1

0,1

1
𝒒𝟏 𝒒𝟐 𝒒𝟑𝒒𝟎

𝑵 = (𝑸, 𝚺, , 𝒒𝟎, 𝑭)

𝑸 = {𝒒𝟎,𝒒𝟏, 𝒒𝟐, 𝒒𝟑}

𝚺 = {𝟎, 𝟏}

𝑭 = {𝒒𝟑}

(𝒒𝟎, 𝟏) =

(𝒒𝟐, 𝟎) =

(𝒒𝟎, 𝟎) =

(𝒒𝟏, 𝜺) =



Nondeterminism
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Ways to think about 
nondeterminism

• (restricted) 
parallel 
computation

• tree of possible 
computations

• guessing and 
verifying the 
“right” choice

Deterministic

Computation
Nondeterministic

Computation

accept or reject accept

reject

ran



Why study NFAs?

• Not really a realistic model of computation: Real 
computing devices can’t really try many possibilities in 
parallel

But:

• Useful tool for understanding power of DFAs/regular 
languages

• NFAs can be simpler than DFAs

• Lets us study “nondeterminism” as a resource

(cf. P vs. NP)
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NFAs can be simpler than DFAs

9/8/2020 CS332 - Theory of Computation 38

An NFA that recognizes the language {1}:

1

1 0,1

0,1
0

A DFA that recognizes the 
language {1}:

ran

ran



Sometimes DFAs must be larger
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Theorem. Every DFA for the language {1} must have at 
least 3 states.

Proof:

ran

ran



Equivalence of NFAs and 
DFAs
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Equivalence of NFAs and DFAs

Every DFA is an NFA, so NFAs are at least as powerful as 
DFAs

Theorem: For every NFA 𝑁, there is a DFA 𝑀 such that 
𝐿 𝑀 = 𝐿(𝑁)

Corollary: A language is regular if and only if it is 
recognized by an NFA
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ran

ran



Equivalence of NFAs and DFAs (Proof)
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Let 𝑁 = (𝑄, Σ, , 𝑞0, 𝐹) be an NFA

Intuition: Run all threads of 𝑁 in 
parallel, maintaining the set of 
states where all threads are.

accept

reject

Goal: Construct DFA 𝑀 = (𝑄, Σ, , 𝑞0, 𝐹) recognizing 𝐿(𝑁)

Formally: 𝑄’ = 𝑃(𝑄)

“The Subset Construction”



NFA -> DFA Example
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1
a b



Subset Construction (Formally)
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𝛿 𝑅, = for all 𝑅 ⊆ 𝑄 and 𝜎 ∈ Σ.

𝑄

𝛿 ∶ 𝑄  Σ → 𝑄

𝑞0 =

𝐹 =

Input: NFA   𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

Output: DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)



NFA -> DFA Example
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0,1

ε 0
2 31

1



Subset Construction (Formally)
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𝛿 𝑅, = 𝑟∈𝑅ڂ 𝛿(𝑟, 𝜎) for all 𝑅 ⊆ 𝑄 and 𝜎 ∈ Σ.

𝑄 = 𝑃(𝑄)

𝛿 ∶ 𝑄  Σ → 𝑄

𝑞0 = {𝑞0}

𝐹 = { 𝑅  𝑄 | 𝑅 contains some accept state of 𝑁}

Input: NFA   𝑁 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)

Output: DFA 𝑀 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹)



Proving the Construction Works

Claim: For every string 𝑤, running 𝑀 on 𝑤 leads to state

{𝑞 ∈ 𝑄|There exists a computation 

of 𝑁 on input 𝑤 ending at  𝑞}

Proof idea: By induction on |𝑤|
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Historical Note

Subset Construction introduced in Rabin & Scott’s 1959 
paper “Finite Automata and their Decision Problems”
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1976 ACM Turing Award citation

For their joint paper "Finite Automata and 
Their Decision Problem," which introduced 

the idea of nondeterministic machines, 
which has proved to be an enormously 
valuable concept. Their (Scott & Rabin) 

classic paper has been a continuous source 
of inspiration for subsequent work in this 

field.

ran



Is this construction the best we can do?

Subset construction converts an 𝑛 state NFA into a 2𝑛-state 
DFA

Could there be a construction that always produces, say, an 
𝑛2-state DFA?

Theorem: For every 𝑛 ≥ 1, there is a language 𝐿𝑛 such that 

1. There is an 𝑛 + 1 -state NFA recognizing 𝐿𝑛. 

2. There is no DFA recognizing 𝐿𝑛 with fewer than  2𝑛

states.

Conclusion: For finite automata, nondeterminism provides an 
exponential savings over determinism (in the worst case).
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