Discussion 11

Problems

1. A permutation on a set $\{1, 2, ..., n\}$ is a one-to-one, onto function of the form $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$. If f is a permutation, then f^t denotes the composition of f with itself t times. Given permutations f and g and an integer t, you need to determine if $g = f^t$. Formulate this problem as a language and prove that this language is in P.

2. Define a RAM Turing machine to be a Turing machine that has random access memory. We formalize this as follows: the machine has additional two symbols on its alphabet we denote by R and W and an additional state we denote by q_{access} . We also assume that the machine has an infinite array A that is initialized to all blanks. Whenever the machine enters q_{access} , if its address tape starts with $\langle i \rangle R$ then the value A[i] is written in the cell next to the R symbol. If its tape contains $\langle i \rangle W\sigma$ where σ is some symbol in the machine's alphabet, then A[i] is set to the value σ .

Show that if a language L can be decided within time T(n) by a RAM TM, then it is in TIME $(T(n)^4)$. (Note that extended Church-Turing thesis only tells you that it *should* be in TIME $(T(n)^{O(1)})$.)

Hint: Try to compress A at any point of time in the execution to size O(T(n)), simulate the RAM TM with a 2-tape TM and apply the transformation in the lecture that turns a multi-tape TM with running time T' to a regular TM with running time T'^2 .